PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Additive Manufacturing of WC-Co by Indirect Selective Laser Sintering (SLS) using High Bulk Density Powders

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Research in additive manufacturing of tungsten carbide-cobalt has intensified over the last few years due to the increasing need for products designed using topology optimisation and multiscale structures (lattice). These products result in complex shapes and contain inner structures that are challenging to produce through conventional techniques, thus involving high costs. The present work addresses this problem using a two-step approach to 3D print parts with complex shapes and internal structures by employing indirect selective laser sintering (SLS) and tungsten carbide-cobalt sintering. The paper takes further our research in this field [1] to improve the part density by using high bulk density tungsten carbide-cobalt powders. Mechanically mixing tungsten carbide-cobalt with the sacrificial binder, polyamide 12, results in a homogenous powder successfully used by the selective laser sintering process to produce green parts. By further processing, the green parts through a complete sintering cycle, an average final part density of 11.72 g/cm3 representing more than 80% of the theoretical density is achieved.
Twórcy
  • Technical University of Cluj-Napoca, Department of Manufacturing Engineering, 103-105, Muncii Avenue, 400641 Cluj-Napoca, Romania
  • Gühring Romania, 32 Constructorilor Street, 407035 Apahida, Romania
  • Technical University of Cluj-Napoca, Materials Science and Engineering Department, 103-105, Muncii Avenue, 400641 Cluj-Napoca, Romania
  • Gühring Romania, 32 Constructorilor Street, 407035 Apahida, Romania
  • Technical University of Cluj-Napoca, Materials Science and Engineering Department, 103-105, Muncii Avenue, 400641 Cluj-Napoca, Romania
  • Technical University of Cluj-Napoca, Department of Manufacturing Engineering, 103-105, Muncii Avenue, 400641 Cluj-Napoca, Romania
  • Technical University of Cluj-Napoca, Materials Science and Engineering Department, 103-105, Muncii Avenue, 400641 Cluj-Napoca, Romania
Bibliografia
  • [1] O.D. Jucan, R. Gădălean, H.F. Chicinaş, M. Hering, N. Bâlc, C.O. Popa, Int. J. Refract. Met. Hard Mater. 105498 (2021).
  • [2] A. Gebhardt, J.S. Hötter, Additive Manufacturing: 3D Printing for Prototyping and Manufacturing, Carl Hanser Verlag GmbH & Company KG, 2016.
  • [3] T.D. Ngo, A. Kashani, G. Imbalzano, K.T.Q. Nguyen, D. Hui, Compos. Part B Eng. 143 172-196 (2018).
  • [4] R. Singh, A. Gupta, O. Tripathi, S. Srivastava, B. Singh, A. Awasthi, S.K. Rajput, P. Sonia, P. Singhal, K.K. Saxena, Mater. Today Proc. 26, 3058-3070 (2020).
  • [5] M. Jiménez, L. Romero, I.A. Domínguez, M. del M. Espinosa, M. Domínguez, Complexity 2019 (2019).
  • [6] B. Post, R.F. Lind, P.D. Lloyd, V. Kunc, J.M. Linhal, L.J. Love, in: Proc. Solid Free. Fabr. Symp. Addit. Manuf. Conf. Austin, TX, USA, Pp. 8-10, 2016,
  • [7] K. Rajaguru, T. Karthikeyan, V. Vijayan, Mater. Today Proc. 21, 628-633 (2020).
  • [8] A. Aramian, S.M.J. Razavi, Z. Sadeghian, F. Berto, Addit. Manuf. 33, 101130 (2020).
  • [9] T. Moritz, S. Maleksaeedi, in: Addit. Manuf., Elsevier, pp. 105-161 (2018).
  • [10] V. Sarin, Comprehensive Hard Materials, Newnes, 2014.
  • [11] N.B. Dahotre, S. Harimkar, Laser Fabrication and Machining of Materials, Springer Science & Business Media, 2008.
  • [12] X.C. Wang, T. Laoui, J. Bonse, J.-P. Kruth, B. Lauwers, L. Froyen, Int. J. Adv. Manuf. Technol. 19, 351-357 (2002).
  • [13] S. Kumar, J. Mater. Process. Technol. 209, 3840-3848 (2009). DOI: https://doi.org/10.1016/j.jmatprotec.2008.08.037
  • [14] S. Kumar, A. Czekanski, Rapid Prototyp. J. 23, 1202-1211 (2017).
  • [15] E. Uhlmann, A. Bergmann, W. Gridin, Procedia CIRP 35, 8-15 (2015).
  • [16] J. Chen, M. Huang, Z.Z. Fang, M. Koopman, W. Liu, X. Deng, Z. Zhao, S. Chen, S. Wu, J. Liu, W. Qi, Z. Wang, Int. J. Refract. Met. Hard Mater. 84, 104980 (2019). DOI: https://doi.org/10.1016/j.ijrmhm.2019.104980
  • [17] A. Fortunato, G. Valli, E. Liverani, A. Ascari, Lasers Manuf. Mater. Process. 6, 247-262 (2019)
  • [18] A. Domashenkov, A. Borbély, I. Smurov, Mater. Manuf. Process. 32, 93-100 (2017). DOI: https://doi.org/10.1080/10426914.2016.1176195
  • [19] M. Padmakumar, Lasers Manuf. Mater. Process. 7, 338-371 (2020).
  • [20] Y. Yang, C. Zhang, D. Wang, L. Nie, D. Wellmann, Y. Tian, Int. J. Adv. Manuf. Technol. 108, 1653-1673 (2020).
  • [21] R.K. Enneti, K.C. Prough, T.A. Wolfe, A. Klein, N. Studley, J.L. Trasorras, Int. J. Refract. Met. Hard Mater. 71, 28-35 (2018).
  • [22] I. Fraunhofer, J. Ceram. Sci. Technol. 8, 155-160 (2016).
  • [23] X. Zhang, Z. Guo, C. Chen, W. Yang, Int. J. Refract. Met. Hard Mater. 70, 215-223 (2018).
  • [24] C.L. Cramer, P. Nandwana, R.A. Lowden, A.M. Elliott, Addit. Manuf. 28, 333-343 (2019).
  • [25] S.D. Nath, S. Nilufar, Polymers (Basel). 12, 2719 (2020).
  • [26] N.P. Juster, Assem. Autom. 14, 14-17 (1994).
  • [27] M. Schmid, K. Wegener, Procedia Eng. 149, 457-464 (2016).
  • [28] R. Raman, R.M. German, Metall. Mater. Trans. A 26, 653-659 (1995).
  • [29] H.F. Chicinaş, T.F. Marinca, P. Götze, A. Eckert, C.O. Popa, J. Mater. Sci. 53, 2901-2910 (2018).
Uwagi
1. This work was supported by the European Development Fund and the Romanian Government through the Competitiveness Operational Programme 2014-2020, project ID P 34 466, MySMIS code 121349, contract no.5/05.06.2018. The generous support of the Gühring Company in making this work possible is highly acknowledged.
2. Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e5bae09d-ddf1-462f-bfe5-60ebfb0af134
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.