PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Self and mutual capacitance of conductors in air and lossy earth with application to electrified railways

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The problem of a closed-form accurate determination of self and mutual capacitance of conductors in air and earth is considered: the application is the complete modeling of a railway line including buried conductors. The Generalized Potential Method (GPM) is presented and analyzed with regard to conditions of validity and solution methods. The accuracy of the GPM is evaluated solving some reference cases using the Complex Image Method and a commercial Finite Element Method simulator, comparing the model results with experimental data, and including the sensitivity on soil conductivity and permittivity, distance of conductors from the air–earth interface and frequency.
Rocznik
Strony
859--873
Opis fizyczny
Bibliogr. 36 poz., rys., tab., wz.
Twórcy
  • University of Genoa Italy
Bibliografia
  • [1] CENELEC Std. CLC/TS 50238-2, Railway applications – Compatibility between rolling stock and train detection systems – Part 2: Compatibility with track circuits (2010).
  • [2] Mariscotti A., Ruscelli M., Vanti M., Modeling of audiofrequency track circuits for validation, tuning and conducted interference prediction, IEEE Trans. on Intelligent Transportation Systems, vol. 11, no. 1, pp. 52–60 (2010).
  • [3] Yuan L., Yang Y., Hernández A., Shi L., Novel adaptive peak detection method for track circuits based on encoded transmissions, IEEE Sensors Journal, vol. 18, no. 15, pp. 6224–6234 (2018).
  • [4] Steimel A., Electric traction – Motive power and Energy supply: basic and practical experience, Oldenbourg Industrieverlag, Munich, Germany (2008).
  • [5] Steczek M., Chudzik P., Szeląg A., Combination of SHE and SHM – PWM techniques for VSI DC-link current harmonics control in railway applications, IEEE Trans. on Industrial Electronics, vol. 64, no. 10, pp. 7666–7678 (2017).
  • [6] Yang Z., Li H., Feng C., Jiang Y., Lin F., Yang Z., Survey on electromagnetic interference analysis for traction converters in railway vehicles, Proceedings of the International Power Electronics Conference (2018), DOI: 10.23919/IPEC.2018.8507954.
  • [7] Paul C., Multiconductor Transmission Lines, J. Wiley, New York (1991).
  • [8] Mariscotti A., Pozzobon P., Determination of the electrical parameters of railway traction lines: calculation, measurement and reference Data, IEEE Trans. on Power Delivery, vol. 19, no. 4, pp. 1538–1546 (2004).
  • [9] Hemmer B., Mariscotti A., Wuergler D., Recommendations for the calculation of the total disturbing return current from electric traction vehicles, IEEE Trans. on Power Delivery, vol. 19, no. 2, pp. 1190–1197 (2004).
  • [10] Dolara A., Leva S., Multiconductor transmission line models for PQ and EMC analysis of railway electrification systems, International Review of Electrical Engineering, vol. 7, no. 5, pp. 5795–5807 (2012).
  • [11] Hill R.J., Carpenter D.C., Rail track distributed transmission line impedance and admittance: theoretical modeling and experimental results, IEEE Trans. on Vehicular Technology, vol. 42, no. 2, pp. 225–241 (1993).
  • [12] Szeląg A., Rail track as a lossy transmission line. Part I: Parameters and new measurement methods, Archives of Electrical Engineering, vol. 49, no. 3–4, pp. 407–423 (2000).
  • [13] Szeląg A., Rail track as a lossy transmission line. Part II: New method of measurements-simulation and in situ measurements, Archives of Electrical Engineering, vol. 49, no. 3–4, pp. 425–453 (2000).
  • [14] Ivanek L., Mostyn V., Schee K., Grun J., The Sensitivity of the Input Impedance Parameters of Track Circuits to Changes in the Parameters of the Track, Advances in Electrical and Electronic Engineering, vol. 15, no. 1, pp. 77–83 (2017).
  • [15] Journey M.P., Steel O.J., Forte B.K., Modelamiento electromagnético de los sistemas eléctricos ferroviarios para estudiar su compatibilidad, Revista Digital Lámpsakos, no. 3, pp. 42–47 (2010).
  • [16] Guglielmino E., Determinación de parámetros electromagnéticos de vías férreas, Ingenierías, vol. 6, no. 19, p. 39 (2003).
  • [17] Bongiorno J., Mariscotti A., Variability of pantograph impedance curves in DC traction systems and comparison with experimental results, Przegl ˛ad Elektrotechniczny, vol. 90, no. 6, pp. 178–183 (2014).
  • [18] D’Addio G., Fracchia M., Mariscotti A., Pozzobon P., Sensitivity analysis of railway line impedance to variations of electrical and geometrical parameters, Proceedings of the World Congress on Railway Research WCRR 99, Tokyo (1999).
  • [19] CCITT Directive, Calculating induced voltages and currents in practical cases, Geneva, Switzerland, vol. II (1989).
  • [20] Ramo S., Winnery J.R., van Duzer T., Fields and waves in communication electronics, New York, J. Wiley & Sons, pp. 291–297 (1965).
  • [21] Illias H.A., Abu Bakar A.H, Mokhlis H., Halim S.A., Calculation of inductance and capacitance in power system transmission lines using finite element analysis method, Przegląd Elektrotechniczny, vol. 88, no. 10, pp. 278–283 (2012).
  • [22] Di Rienzo L., Zhang Z., Pignari S.A., Boundary-element computation of per-unit-length series parameters of railway lines, IEEE Trans. on Electromagnetic Compatibility, vol. 51, no. 3, pp. 825–832 (2009).
  • [23] D’Amore M., Sarto M.S., Simulation models of a dissipative transmission line above a lossy ground for a wide-frequency range – Part II: Multi conductor configuration, IEEE Trans. on Electromagnetic Compatibility, vol. 38, no. 2, pp. 139–149 (1996).
  • [24] Robinson D.A., Measurement of the solid dielectric permittivity of clay minerals and granular samples using a time domain reflectometry immersion method, Vadose Zone Journal, vol. 3, pp. 705–713 (2004), www.vadosezonejournal.org, accessed April 2019.
  • [25] Martinez A., Byrnes A.P., Modelling dielectric-constant values of geologic materials: an aid to groundpenetrating radar data collection and interpretation, Current Research in Earth Sciences, Bulletin 247, part 1 (http://www.kgs.ukans.edu/Current/2001/martinez/martinez1.html) (2001).
  • [26] Olhoeft G.R., Electrical properties of rocks in Physical Properties of Rocks and Minerals, Hemisphere Publishing Corporation, New York, pp. 257–329 (1989).
  • [27] Edwards R.J., Skin Depth in the Ground vs. Frequency for Given Soil Characteristics, March 18 (1999), www.smeter.net, accessed April 2019.
  • [28] Scott J.H., Carrol R.D., Cunningham D.R., Dielectric constant and electrical conductivity measurements of moist rock: a new laboratory method, Journal of Geophysical Research, vol. 27, no. 20 (1967).
  • [29] Tabbagh A., Hesse A., Grard R., Determination of electrical properties of the ground at shallow depth with an electrostatic quadrupole: field trials on archaeological sites, Geophysical Prospection, vol. 41, pp. 579–597 (1993).
  • [30] Robinson D.A. et al., Considerations for improving the accuracy of permittivity measurement using time domain reflectometry: air-water calibration, effects of cable length, Journal of Soil Science Society of America, vol. 67, pp. 62-67 (2003).
  • [31] Longley-Rice soil characteristics (2003), www.softwright.com, accessed April 2019.
  • [32] Mariscotti A., Pozzobon P., Experimental results on low rail-to-rail conductance values, IEEE Trans. on Vehicular Technology, vol. 54, no. 3, pp. 1219–1222 (2005).
  • [33] Sverko E.R., Ground measuring techniques: electrode resistance to remote earth & soil resistivity, Feb. 11 (1999), www.erico.com, accessed April 2019.
  • [34] Table of resistivity values, http://hyperphysics.phy-astr.gsu.edu/hbase/Tables/rstiv.html, accessed April 2019.
  • [35] IEEE Std. 81, IEEE Guide for measuring earth resistivity, ground impedance and earth surface potentials of a ground system (1983).
  • [36] ANSOFT Maxwell, https://www.ansys.com/academic/free-student-products, accessed April 2019.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e5b691aa-5b6d-41e1-8727-84b0e76d63de
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.