PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Kinematics of crustal deformation along the central Himalaya

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Utilizing an updated dataset of 145 GNSS surface velocities, this study examines the fault slip rate and fault geometry along the Main Himalayan Thrust (MHT) in the central Himalaya. Employing a Bayesian inversion model, the present analysis reveals that the upper portion of the MHT ramp exhibits full locking, while the lower flat displays creeping motion. The estimated locking depth and fault depth of MFT range from 4.3 ± 2.6 km to 9.7 ± 2.2 km and 13.5 ± 3.1 km to 15.8 ± 1.9 km, respectively, along the central Himalaya. Further, the slip rate along the transition zone lies in the range of 1.4 ± 0.8 mm/yr to 2.7 ± 0.5 mm/yr. Considering the amount of uncertainties as ~1-2 mm/yr in GNSS velocities, the study suggests that the transition zone along the middle flat of the MHT also exhibits locking behavior. Thus, the estimated locking depth extends to ~15.0 km down-dip and covers a horizontal distance of ~90 km (locking line) on the surface, reaching the foothills of the Higher Himalaya. Furthermore, along the deeper flat of the MHT, the slip rate ranges from 19.4 ± 2.5 mm/yr in the west to 12.8 ± 1.6 mm/yr in the east along Nepal Himalaya. The analysis also calculates the slip deficit rate along the MHT fault plane, revealing values of ~15.1 mm/yr in western Nepal, ~12.7 mm/yr in central Nepal, and ~10.6 mm/yr in eastern Nepal. These slip deficit rates across different segments of central Nepal indicate the potential for large earthquakes in the region. The results are further supported by a resolution test using a checkerboard synthetic model, demonstrating the capability of the GNSS network to capture the slip rate along the MHT. These findings inevitably contribute to a comprehensive assessment of the seismic hazard potential in the central Himalayan region.
Czasopismo
Rocznik
Strony
553--564
Opis fizyczny
Bibliogr. 58 poz.
Twórcy
  • National Cheng Kung University, Tainan, Taiwan
  • Birla Institute of Technology and Science, Pilani, Pilani Campus, Pilani, India
autor
  • National Cheng Kung University, Tainan, Taiwan
  • Birla Institute of Technology and Science, Pilani, Pilani Campus, Pilani, India
  • Birla Institute of Technology and Science, Pilani, Pilani Campus, Pilani, India
  • Department of Geography, National Taiwan University, Taipei, Taiwan
Bibliografia
  • 1. Ader T, Avouac J-P, Liu-Zeng J, Lyon-Caen H, Bollinger L, Galetzka J, Genrich J, Thomas M, Chanard K, Sapkota SN (2012) Convergence rate across the Nepal Himalaya and interseismic coupling on the main Himalayan thrust implications for seismic hazard. J Geophys Res Solid Earth. https://doi.org/10.1029/2011JB009071
  • 2. Altamimi Z, Metivier L, Collilieux X (2012) ITRF2008 plate motion model. J Geophys Res Solid Earth. https://doi.org/10.1029/2011J B008930
  • 3. Avouac J-P (2003) Mountain building, erosion, and the seismic cycle in the Nepal Himalaya. Adv Geophys 46:1-80
  • 4. Bagnardi M, Hooper A (2018) Inversion of surface deformation data for rapid estimates of source parameters and uncertainties: a Bayesian approach. Geochem Geophys Geosyst 19(7):194-2211
  • 5. Bettinelli P, Avouac J-P, Flouzat M, Jouanne F, Bollinger L, Willis P, Chitrakar GR (2006) Plate motion of India and interseismic strain in the Nepal Himalaya from GPS and DORIS measurements. J Geodesy 80:567-589
  • 6. Bilham R (2019) Himalayan earthquakes: a review of historical seismicity and early 21st century slip potential. Geol Soc, Lond, Spec Pub 483:416-483
  • 7. Bilham R, Ambraseys N (2005) Apparent Himalayan slip deficit from the summation of seismic moments for Himalayan earthquakes. Curr Sci 1500-2000:1658-1663
  • 8. Bilham R, Larson K, Freymueller J (1997) GPS measurements of present-day convergence across the Nepal Himalaya. Nature 386:61
  • 9. Bilham R, Mencin D, Bendick R, Burgmann R (2017) Implications for elastic energy storage in the Himalaya from the Gorkha 2015 earthquake and other incomplete ruptures of the main Himalayan thrust. Quatern Int 462(1):3-21
  • 10. Bilham R, Blume F, Bendick R, Gaur VK (1998) Geodetic constraints on the translation and deformation of India: implications for future great Himalayan earthquakes. Indian Acad Sci, Curr Sci 74:213-229
  • 11. Bollinger L, Sapkota SN, Tapponnier P, Klinger Y, Rizza M, Van Der Woerd J, Tiwari DR, Pandey R, Bitri A, de Berc S (2014) Estimating the return times of great Himalayan earthquakes in eastern Nepal: evidence from the Patu and Bardibas strands of the main Frontal thrust. J Geophys Res Solid Earth 119(9):7123-7163
  • 12. Burgmann R, Larson K, Bilham R (1999) Model inversion of GPS and leveling measurements across the Himalaya: implications for earthquake hazards and future geodetic networks. Himal Geol 20:59-72
  • 13. Burgmann R, Kogan MG, Steblov GM, Hilley G, Levin VE, Apel E (2005) Interseismic coupling and asperity distribution along the Kamchatka subduction zone. J Geophys Res Solid Earth. https:// doi.org/10.1029/2005JB003648
  • 14. Cattin R, Avouac JP (2000) Modeling mountain building and the seismic cycle in the Himalaya of Nepal. J Geophys Res Solid Earth 105(B6):13389-13407
  • 15. Chen Q, Freymueller JT, Yang Z, Xu C, Jiang W, Wang Q, Liu J (2004) Spatially variable extension in southern Tibet based on GPS measurements. J Geophys Res Solid Earth. https://doi.org/ 10.1029/2002JB002350
  • 16. Chuang RY, Johnson KM (2011) Reconciling geologic and geodetic model fault slip-rate discrepancies in Southern California: consideration of nonsteady mantle flow and lower crustal fault creep. Geology 39(7):627-630
  • 17. Dal Zilio L, Jolivet R, van Dinther Y (2020) Segmentation of the main Himalayan thrust illuminated by Bayesian inference of interseis-mic coupling. Geophys Res Lett 47(4):e2019GL086424
  • 18. DeCelles PG, Robinson DM, Quade J, Ojha TP, Garzione CN, Copeland P, Upreti BN (2001) Stratigraphy, structure, and tectonic evolution of the Himalayan fold-thrust belt in western Nepal. Tectonics 20(4):487-509
  • 19. Dey S, Kaushal RK, Jain V (2019) Spatiotemporal variability of neotectonic activity along the Southern Himalayan front: a geomorphic perspective. J Geodyn 129:237-246
  • 20. Diao F, Wang R, Zhu Y, Xiong X (2022) Revisiting the fault locking of the central Himalayan thrust with a viscoelastic earthquake-cycle deformation model. Seismol Soc Am 93(1):193-200
  • 21. Fukuda J, Johnson KM (2008) A fully Bayesian inversion for spatial distribution of fault slip with objective smoothing. Bull Seismol Soc Am 98(3):1128-1146
  • 22. Herring TA, King RW, McCluskey SC (2015) Introduction to GAMIT/ GLOBK, release 10.4. Massachusetts Institute of Technology, Cambridge
  • 23. Hossler T, Bollinger L, Sapkota SN, Lave J, Gupta RM, Kandel TP (2016) Surface ruptures of large Himalayan earthquakes in Western Nepal: evidence along a reactivated strand of the main boundary thrust. Earth Planet Sci Lett 434:187-196
  • 24. Hu W-L (2022) How do differences in interpreting seismic images affect estimates of geological slip rates? Solid Earth 13(8):1281-1290
  • 25. Hu W-L, Stevens VL (2022) Duplex kinematics reduces both frontal advance and seismic moment deficit in the Himalaya. Geology 50(10):1161-1165
  • 26. Hubbard J, Almeida R, Foster A, Sapkota SN, Burgi P, Tapponnier P (2016) Structural segmentation controlled the 2015 Mw 7.8 Gorkha earthquake rupture in Nepal. Geology 44(8):639-642
  • 27. Johnson KM, Segall P, Yu SB (2005) A viscoelastic earthquake cycle model for Taiwan. J Geophys Res Solid Earth. https://doi.org/10. 1029/2004JB003516
  • 28. Jouanne F, Mugnier JL, Pandey MR, Gamond JF, Le Fort P, Serrurier L, Vigny C, Avouac JP (1999) Oblique convergence in the Himalayas of western Nepal deduced from preliminary results of GPS measurements. Geophys Res Lett 26:1933-1936
  • 29. Jouanne F, Mugnier JL, Sapkota SN, Bascou P, Pecher A (2017) Estimation of coupling along the main Himalayan thrust in the central Himalaya. J Asian Earth Sci 133:62-71
  • 30. Kumar P, Yuan X, Kind R, Ni J (2006) Imaging the colliding Indian and Asian lithospheric plates beneath Tibet. J Geophys Res Solid Earth. https://doi.org/10.1029/2005JB003930
  • 31. Larson KM, Burgmann R, Bilham R, Freymueller JT (1999) Kinematics of the India-Eurasia collision zone from GPS measurements. J Geophys Res Solid Earth 104:1077-1093
  • 32. Lave J, Avouac J-P (2000) Active folding of fluvial terraces across the Siwaliks Hills, Himalayas of central Nepal. J Geophys Res Solid Earth 105(B3):5735-5770
  • 33. Lave J, Avouac J-P (2001) Fluvial incision and tectonic uplift across the Himalayas of central Nepal. J Geophys Res Solid Earth 106(B11):26561-26591
  • 34. Li S, Moreno M, Bedford J, Rosenau M, Oncken O (2015) Revisiting viscoelastic effects on interseismic deformation and locking degree: A case study of the Peru-North Chile subduction zone. J Geophys Res Solid Earth 120(6):4522-4538
  • 35. Li Y, Song X, Shan X, Qu C, Wang Z (2016) Locking degree and slip rate deficit distribution on MHT fault before 2015 Nepal Mw 7.9 earthquake. J Asian Earth Sci 119:78-86
  • 36. Li S, Wang Q, Yang S, Qiao X, Nie Z, Zou R, Ding K, He P, Chen G (2018) Geodetic imaging mega-thrust coupling beneath the Himalaya. Tectonophysics 747:225-238
  • 37. Li S, Wang Q, Chen G, He P, Ding K, Chen Y, Zou R (2019) Inter-seismic coupling in the Central Nepalese Himalaya: spatial correlation with the 2015 Mw 7.9 Gorkha earthquake. Pure Appl Geophys 176:3893-3911
  • 38. Lindsey EO, Almeida R, Mallick R, Hubbard J, Bradley K, Tsang LLH, Liu Y, Burgmann R, Hill EM (2018) Structural control on downdip locking extent of the Himalayan megathrust. J Geophys Res Solid Earth 123:5265-5278
  • 39. Mugnier J-L, Gajurel A, Huyghe P, Jayangondaperumal R, Jouanne F, Upreti B (2013) Structural interpretation of the great earthquakes of the last millennium in the central Himalaya. Earth Sci Rev 127:30-47
  • 40. Mugnier J-L, Huyghe P, Leturmy P, Jouanne F (2004) Episodicity and rates of thrust-sheet motion in the Himalayas (western Nepal), pp 91-114
  • 41. Murphy MA, Taylor MH, Gosse J, Silver CRP, Whipp DM, Beaumont C (2014) Limit of strain partitioning in the Himalaya marked by large earthquakes in western Nepal. Nat Geosci 7(1):38-42
  • 42. Nicol A, Wallace LM (2007) Temporal stability of deformation rates: comparison of geological and geodetic observations Hikurangi Subduction Margin, New Zealand. Earth Planet Sci Lett 258(3-4):397-413
  • 43. Pandey MR, Tandukar RP, Avouac JP, Lave J, Massot JP (1995) Interseismic strain accumulation on the Himalayan crustal ramp (Nepal). Geophys Res Lett 22(7):751-754
  • 44. Pasari S, Sharma Y, Neha (2021) Quantifying the current state of earthquake hazards in Nepal. Appl Comput Geosci 10:100058
  • 45. Robinson DM (2008) Forward modeling the kinematic sequence of the central Himalayan thrust belt, western Nepal Himalayan thrust belt, western Nepal. Geosphere 4(5):785-801
  • 46. Sapkota SN, Bollinger L, Klinger Y, Tapponnier P, Gaudemer Y, Tiwari D (2013) Primary surface ruptures of the great Himalayan earthquakes in 1934 and 1255. Nat Geosci 6(1):71
  • 47. Sharma Y, Pasari S, Ching KE, Dikshit O, Kato T, Malik JN, Chang CP, Yen JY (2020) Spatial distribution of earthquake potential along the Himalayan arc. Tectonophysics 791:228556
  • 48. Sreejith KM, Sunil PS, Agrawal R, Saji AP, Rajawat AS, Ramesh DS (2018) Audit of stored strain energy and extent of future earthquake rupture in central Himalaya. Sci Rep 8(1):1-9
  • 49. Stevens VL, Avouac JP (2015) Interseismic coupling on the main Himalayan thrust. Geophys Res Lett 42:5828-5837
  • 50. Stevens VL, Avouac J-P (2016) Millenary Mw>9.0 earthquakes required by geodetic strain in the Himalaya. Geophys Res Lett 43:1118-1123
  • 51. Verma H, Sharma Y, Pasari S (2022) Synthetic aperture radar interferometry to measure earthquake-related deformation: a case study from Nepal. In: Disaster management in the complex Himalayan terrains: natural hazard management, methodologies and policy implications. Springer, pp 133-140
  • 52. Wallace K, Bilham R, Blume F, Gaur VK, Gahalaut V (2005) Surface deformation in the region of the 1905 Kangra Mw=7.8 earthquake in the period 1846-2001. Geophys Res Lett. https://doi.org/10. 1029/2005GL022906
  • 53. Wang M, Shen Z-K (2020) Present-day crustal deformation of continental China derived from GPS and its tectonic implications. J Geophys Res Solid Earth 125(2):e2019JB018774
  • 54. Wesnousky SG (2020) Great pending Himalaya earthquakes. Seismol Res Lett 91(6):3334-3342
  • 55. Wesnousky SG, Kumahara Y, Chamlagain D, Pierce IK, Karki A, Gautam D (2017) Geological observations on large earthquakes along the Himalayan frontal fault near Kathmandu Nepal. Earth Planet Sci Lett 457:366-375
  • 56. Wobus C, Heimsath A, Whipple K, Hodges K (2005) Active out-ofsequence thrust faulting in the central Nepalese Himalaya. Nature 434(7036):1008-1011
  • 57. Zhao B, Burgmann R, Wang D, Tan K, Du R, Zhang R (2017) Dominant controls of downdip afterslip and viscous relaxation on the postseismic displacements following the Mw7. 9 Gorkha Nepal, Earthquake. J Geophys Res Solid Earth 122(10):8376-8401
  • 58. Zheng G, Wang H, Wright TJ, Lou Y, Zhang R, Zhang W, Shi C, Huang J, Wei N (2017) Crustal deformation in the India-Eurasia collision zone from 25 years of GPS measurements. J Geophys Res Solid Earth 122:9290-9312
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e5b585f3-7c8e-4f22-a287-ab58f9df2c24
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.