Journal of Polish Safety and Reliability Association
Summer Safety and Reliability Seminars, Volume 6, Number 2, 2015

Kolowrocki Krzysztof

Torbicki Mateusz
Maritime University, Gdynia, Poland

Reliability of large three-dimensional nanosystems

Keywords

reliability, nanosystem, asymptotic approach, limit reliability function

Abstract

Basic notions and agreements on reliability of three-dimensional nanosystems are introduced. The asymptotic
approach to the three-dimensional nanosystem reliability investigation is presented and the nanosystem limit
reliability function is defined. Auxiliary theorems on limit reliability functions of three-dimensional
nanosystems composed of large number of independent nanocomponents are formulated and the classes of limit
reliability functions for a homogeneous series and series-parallel nanosystems are fixed. A model of a three-
dimensional series and series-parallel nanosystem with dependent nanocomponents is created and the class of
limit reliability functions identical with the class in the previous case is fixed as well. The asymptotic approach
to reliability evaluation of exemplary three-dimensonal series and series-parallel nanosystem with dependent
nanocomponents is presented and its accuracy is discussed.

1. Introduction

A nanosystem is a device which is a system
engineered in a nanoscale, in other words, at least
one of its dimensions is in size range of 1 to 100
nanometers (10 to 107 meters) and which is made
up of individual nanocomponents. We could ponder
nanosystems as large systems because they could be
built of a large number of nanocomponents. In that
case, the determination of an exact reliability of the
nanosystem could lead us to very complicated
formula. This happens mostly when survival
functions of nanocomponents are dependent on each
other. It makes that obtain results are often useless
for practical purpose. Asymptotic approach to
reliability evaluation of nanosystems is a solution to
this problem. If we assume that the number of
nanocomponents tends to infinity and find the limit
reliability of the nanosystem, we can receive a
simply function which approximate the reliability
function. Main results concerned with the asymptotic
approach to the reliability of large nanosystems
which nanocomponents are dependent of each other
and the dependence between nanocomponents is
decreasing when the distance between them tends to
infinity are presented. There are also considered
models of series and series-parallel nanosystems with
dependent nanocomponents which asymptotic
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reliability functions are determined using modified
lemmas which are used in the investigation of limit

reliability ~ functions of  nanosystems  with
independent nanocomponents.

2. Reliability of three-dimensional
nanosystems

We consider a three-dimensional nanosystem

composed of
n=hm +IL,m, +...+I, m ,neN,,

nanocomponents Ej;q, Ejgo, ...

E12ml y o E, I, My, ?

where I, m; € Ny, i =1, 2,...,, k, € N4. They are
arranged in order shown in Figure 1.
We denote the sets of indexes by

k) ={(, ), 0) 1j=1.
V= 1,..., m;, i= 1,

Dknlnmn :W((In’ mn)i"'i(ln'mn))!

k, pairsof (I,,m,)
Zygm, =Q, J,0), (0, J,m)) € Dy XDy
(i<iVv(i=irj<j)v(i=irj=jro<v)}.

s E]_]_ml! ElZly E122, LR

) Elllml’ E2111 E212:"', E2|2m21---1

W((li, mi) = 1,..
s Ko},
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Figure 1. A graph of the three-dimensional
nanosystem composed of nanocomponents

Ei11, E1121"'1E11m1’ElZlvE122""1E1I1m1""’Eknlknmkn ,
Ii, mi S N+, | = 1, 2,..., kn, kn S N+

Moreover, we mark by sjj,(t), t € <0, +0), (i, j, v) €
W((li, m): i = 1,..., ky), a nanocomponent Ej;, dis-
placement stochastic process which is equal to 0
when a nanocomponent Ej, is displaced from its
initial position at the moment t, t € <0, +o0), and it
is equal to 1 when a nanocomponent Ej, is not
displaced from its initial position at this moment.

We assume that a nanocomponent Ej,, (i, j, v) €
W((li, m): i = 1,..., ky), is not displaced at the
moment t = 0 and we mark by Tj, a non-negative
continuous random variable that represents the time
at which a nanocomponent Ej, becomes displaced
from its initial position. Further, the random variable
Tij, will also be called the time up to displacement of
a nanocomponent Ej;, from its initial position.

From this fact we receive that

Tijo = tiju if and Only if Siju(tiju_) =1land Sijo(tiju) =0

for tij, > 0, (i, j, v) € W((Il;, m):i=1,..., ky).
We denote by

Fip(t) = P(Tip <1), D)
t € (-00, +0), (i, j, v) € W((li, m)) :i=1,..., k),
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the distribution function of the time up to
displacement Tj;, of the nanocomponent Ej,.
Definition 2.1. A nanocomponent Ej;,, (i, j, v) €
W((li, m) :i=1,..., ky), is failed if it is displaced
from its initial position.

Definition 2.2. A function

Rijv(t) = P(Tijv > t),
t € (-o0, +0), (i, j, v) € W((li, m)) :i=1,..., ky),

(2)

is called a reliability function of a nanocomponent
Eiju-

Corollary 2.1. Between the distribution function Fi;,
@, j, v) € W((l;, m): i = 1,..., k), of a nano-
component Ej, and its reliability function Ry, the
following relationship

Fip(t) + Rip(t) = 1, 3)

holds for t € (-o0, +00).

Definition 2.3. A three-dimensional nanosystem is
called homogeneous if all its nanocomponents have
the same reliability function R(t), t € (-0, +0) i.€.

Rijn(t) = P(Tij, > t) = R(1), (4)
t e (-0, +o0), (i, j, 0) € W((l, m):i=1,..., kn).

Further, we mark by s(t), t € < 0, +o0) a nanosystem
failure stochastic process which is equal to 0 when a
nanosystem is failed at the moment t, t € < 0, +o0)
and it is equal to 1 when a nanosystem is not failed at
this moment.

We assume that a nanosystem is not failed at the
moment t = 0 and we mark by T a non-negative
continuous random variable that represents the time
at which a nanosystem becomes failed. Next, the
random variable T will also be called the time up to
nanosystem failure or the nanosystem lifetime.

From the above assumptions we conclude that

T=t ifandonlyifs(t)=1ands(t)=0, fort>0.
We denote by

F(t) = P(T <t), t € (-0, +0), (5)
the distribution function of the nanosystem lifetime.
Definition 2.4. We call a function

RO =P(T>1),t € (-0, +o0), (6)



Journal of Polish Safety and Reliability Association
Summer Safety and Reliability Seminars, Volume 6, Number 2, 2015

the reliability function of the three-dimensional
nanosystem.
Definition 2.5. A function

Re i Ty oMy ey, (1) =P(T >1),t & (—o0,+0),
where

T=o(Tij: (i, J,0) € W((li, m) s i=1,..., ky)),

and ¢ is the three-dimensional nanosystem reliability
structure function dependent on the nanosystem
model and expressing the relationship between the
nanosystem lifetime and its nanocomponents times
up to their displacements from their initial positions,
is called the reliability function of the three-
dimensional nanosystem composed of n e N.
nanocomponents E,, (i, j, v) € W((li, mj) :i=1,...,
Kn).

Definition 2.6. A three-dimensional nanosystem is
called series if it is not failed if and only if all its
nanocomponents E,, (i, j, v) € W((li, mj) - i=1,...,
k.), are not displaced.

Corollary 2.2. The lifetime of a three-dimensional
series nanosystem composed of n nanocomponents
Eijo, (1, J, ) € W((li, mj) : i=1,..., ky), is equal to

T = min{ min {T; }}, (7)
I<i<k, 1<l
1<v<m;

where Tj;, are the nanocomponents Ej;, displacement
times.

Definition 2.7. We call a three-dimensional
nanosystem series-parallel if its lifetime T is given by

T= lrgga'g:{%ggln {Tiju}}- (8)
<v<m;

Definition 2.8 The nanocomponents Ej;, (i, j, v) €
W((l;, mj) s i=1,..., ky), displacement times Tj;, are
independent random variables if and only if

R(tij,: (1, J, 0) € W((li, m) si=1,...,ky))

kﬂ
:H[ HRiju(tiju)]i
i=1 j=l. ),

where

R(tij,: (1, J, 0) € W((l;, m) si=1,...,kn))
= P(Tiju>tiju: (I, j, 1)) € W((l,, mi) = 1,..., kn))
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for tijv € (-OO, +CX)), (I! j! 1)) € W((Ila mi) ti= 1:---: kn).
is a joint reliability function of a random vector

(Tijvv (|, j, 1)) € W((I,, mi) i=1,..., kn))
and

Ri, (t;,) =R(-o0,....o0;t

ijv 1Hjour

tijv € (-OO, ‘f‘OO)j (I, j, l)) (<] W((I,, mi) = 1,..., kn),

—0,...,—0),

are the reliability functions of the nanocomponents
Eij, defined by (2).

Corollary 2.3. If nanocomponents Ej,, (i, j, v) €
W((li, mj) : 1 =1,..., ky), displacement times Tj;, of the
three-dimensional nanosystem are independent
random variables, then the reliability function of the
three-dimensional

a) series nanosystem is given by

kn

Rkn,l1,...1kn,ml,...mkn ®) :H[ HRiju(t)]i C))

il o1,
U:].,...,ITIi

b) series-parallel nanosystem is given by

Kp 1 T M e My ( )

Kn
=1-][o- JIR. 1 (10)

j=1,.. ),
v=l,..m;

where Rij,(t), t € (-o0, +o0), (i, j, v) € W((li, m) : i =
l,..., kp), are the reliability functions of its
nanocomponents defined by (2).

Definition 2.9. We call three-dimensional
nanosystem regular if

|1: |2: e — Ikn = In, In € N+,
mp=m=...= M =My M, € N..
We mark by

Kn, In, My € N,

the reliability function of the three-dimensional
regular nanosystem.

Corollary 2.4. Under assumptions from Corollary
2.5 and assuming that the pondered nanosystem is
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homogeneous the reliability function of the three-
dimensional
a) regular series nanosystem is given by

R 1m0 =[ROT'™ =[ROT", (12)

b) regular series-parallel nanosystem is given
by

R .m @O =1-[1-[R®)I]"™]", (12)

where ki, I, mp, 1 € Ni and R(t), t € (-00, +00), is the
reliability function of its nanocomponents defined by
(4).

Further, we will also mull over more general case
when the nanocomponents Ej,, (i, j, v) € Dknlnmn*

displacement times T;, of the regular three-
dimensional nanosystem are dependent random
variables, formulated in the following assumption.
Assumption 2.1. The dependence between Tj;, and
Tipes (1], 0), (P, ), 07) € anlnmn , decreases with

the increasing distance d((i, j, v), (i’, j’, v*)) between
them in that way they are independent when this
distance tends to infinity.

3. Asymptotic approach to reliability of three-
dimensional nanosystems

Considering the reliability of three-dimensional
nanosystems we assume that the distributions of the
nanocomponents displacement times and the
nanosystem lifetime T do not necessarily have to be
concentrated in the interval < 0, +o0). It means that a
reliability function R(t), t € (-, +o0), does not have
to satisfy the usually demanded condition

R(t) =1fort<0,

At the same time, from the achieved results on the
generalized reliability functions, for particular cases,
the same properties of the normally used reliability
functions appear.

From that assumption it follows that between a
reliability function R(t), t € (-0, +0), and a distribu-
tion function F(t) there exists a relationship given by

R(t) =1- F(t) for t € (-o0, +o0).
Thus, the following corollary is obvious.
Corollary 3.1. A reliability function R(t) is

nonincreasing, right-continuous and R(-0) = 1,
R(+w0) = 0.
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Definition 3.1. A reliability function R(t) is called
degenerate if there exists t; € (-o0, +0), such that

R(t)=1fort<tyand R(t)=0fort > t,.
Corollary 3.2. A function

a)
b)

R(t) = 1 - exp(-V(t)), t € (-o0, +o0),
R(t) = exp(-V(t)), t & (-0, +o0),

is a reliability function if and only if
a) a function V(t) is non-negative, non-
increasing, right continuous, V(-o0) = +oo,
V(+0) =0,
b) afunction V (t) is non-negative, non-
decreasing, right continuous, V (=) =0,
V (+00) = +o,
and moreover, V(t) and V (t) can be identically equal

to +oo in an interval.
Agreement 3.1. In further considerations if we use

symbols V(t) and V (t) we always mean functions of
properties given in Corollary 3.2.

If V(t) and V(t) are identically equal to +oo we
assume that

exp(-V (t)) = 0 and exp(-V(t)) = 0.

If we say that V/(t) and V/(t) are a non-negative, non-
decreasing or non-increasing and right-continuous
we mean the intervals where V(t), \7(t) # +o0.

Moreover, we denote the set of continuity points of a
reliability function R(t) by Cr, R(t) by Cy, the set

of continuity points of a function V(t) and points
such that V(t) = +oo by Cy and similarly, the set of

continuity points of a function \7(t) and points such
that V (t) = +oo by Cy .

Definition 3.2. A function V(t) is called degenerate if
there exists ty e (-0, +00), such that

V() =+oofort <ty and V(t) =0fort > t,

and similarly, a function V (t) is called degenerate if
there exists ty e (-0, +0), such that

V(t) =0fort<t, and V(t) = +ofort > t.

Under this definition the following corollary is clear.
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Corollary 3.3. A reliability function
a) R(t) =1- exp(—V(t)), te (_OO, +OO),
b) R =exp(-V(t), t (o, +0),

is degenerate if and only if
a) a function V(t) is degenerate,

b) afunction V (t) is degenerate.

The asymptotic approach to the reliability of
nanosystems depends on the investigation of limit
distributions of a standardised random variable
(T — ay)/b, where T is the lifetime of a nanosystem
and a, > 0, b, € (-0, +o0), are suitably chosen
numbers called normalising constants. Since

P((T-b)/a >t)=P(T >at+h)
= Rkn,ln,mn (ant+bn)l

where Ry | m (t) is a reliability function of a

regular nanosystem composed of n e N, nano-
components, then the following definition becomes
natural.

Definition 3.4. A reliability function #(t) is called a

limit reliability function or an asymptotic reliability
function of a regular nanosystem having a reliability

function R, n () if there exist normalising
constants a, > 0, b, € (-0, +o0), such that

lim R, | , (@,t+b,)=91) fort eCyg.

n—+o00
Thus, if the asymptotic reliability function #t) of a

system is known, then for sufficiently large n € N,
the approximate formula

R 1m () = F((t-bn)/a), t € (-0, +o0), (13)

may be used instead of the system exact reliability
function R, ., (). From the condition

limR, |, ., (a,t+b,)=9t) forteCg,
N—>+oo NTNTTN

it follows that setting
Op = aay, ﬂn = ban + bn;
where a>0and b € (-o0, +0), for t € Cg We receive

lim Rkn,ln,mn (ant + ﬂn) =

N—+o0

= lim Ry,  (a,(at+b) +b,) = Hat + b)

Hence, if #(t) is the limit reliability function of a
system, then ##(at + b) with arbitrarya>0and b € (-
o, +oo), is also its limit reliability function. That
fact, in a natural way, yields the concept of a type of
limit reliability function.

Definition 3.5. The limit reliability functions #(t)
and #(t) are said to be of the same type if there exist
numbersa > 0and b € (-o0, +0), such that

FHo(t) =Fat + b) for t € (-0, +00),

Agreement 3.2. In further considerations we assume
the following notation:

X(n) << y(n) or x(n) = o(y(n)), where x(n) and y(n)
are positive functions, means that x(n) is of order
much less than y(n) in a sense

nIirp x(n)/y(n) =0.

4. Limit reliability of the three-dimensional
nanosystem with independent
nanocomponents

The investigations of limit reliability functions of
homogeneous regular nanosystems with independent
nanocomponents are based on following auxiliary
lemmas.

Lemma4.1. If
(i) F(t) = exp(-V(t)), isanon-
degenerate
reliability function,
(ii) ﬁkn 1,.m. () is the reliability function
of a

homogeneous regular series nanosystem with
independent nanocomponents defined by (12),
(iii) a, >0, b, € (-0, +0)

then

Ry 1 m (@nt+by) =T (1) forte Cz  (14)
if and only if
lim nF(a,t+b,)=V(t) forteCy. (15)
n—+oo

Lemma 4.2. If
(i) ky—=>k>0,1I,- m, > +oo,
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(i) () is a non-degenerate reliability
function,

(iii) Ry .1,,m, (t)is the reliability function of
a homogeneous regular series-parallel
nanosystem with independent
nanocomponents defined by (13),

(iv) a, >0, b, € (-0, +00)

then

lim R, o (@t+b)=2() fort e Cy,
n—+o0

if and only if

lim [R(ant + by) I"™ = 9(t) for t € Cyp.,

where () is a non-degenerate reliability function
and

() =1—[L— F(O] fort e (oo, +0),

Lemma 4.1 - 4.2 are an essential tool in finding limit
reliability functions of homogeneous regular series
and series-parallel nanosystems with independent
nanocomponents. Their various proofs may be found
in [1], [4] and [5]. They also are the basis for fixing
the class of all possible limit reliability functions of
these systems. These classes are determined by the
following theorems proved in [1], [4] and [5].

Theorem 4.1. The only non-degenerate limit
reliability functions of the homogeneous regular
three-dimensional series nanosystem  with
independent nanocomponents are:

#7(t)= {exp[—(—t)‘ lt<0 fora >0,
0, t>0,

_ 1, t<0

R, ()= fora >0,
exp[-t“],t =0,

R, (t) = exp[-explt]] fort e (—oo0, +o0).

The classes of limit reliability functions of a
homogeneous regular three-dimensional series-
parallel nanosystem with independent
nanocomponents depend on the relationships
between numbers k, and I,-m, [5].

Theorem 4.2. If k, > k, k> 0, and I,m,, = +o0, then
the only non-degenerate limit reliability functions of
the homogeneous regular series-parallel nanosystem
with independent nanocomponents are:
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1- (@A —exp[-(-t)*])*,t<0

H )= fora >0,
1 () {o t>0,

1, t<0

()= {1— (1—exp[-t*])*,t >0,

9 (1) =1 — (1 — exp[- exp ()])* for t € (—o0, +).

fora >0,

5. Limit reliability of the three-dimensional
nanosystem with dependent nanocomponents

To investigate the limit reliability functions of some
three-dimensional homogeneous regular series and
series-parallel ~ nanosystems  with  dependent
nanocomponents which satisfy Assumption 2.1 we
can use modified Lemma 4.1 and Lemma 4.2.

Theorem 5.1. If the joint reliability function of the
homogeneous regular series nanosystem is given by

Re 1m, (tj, (0, J,0) €Dy ) =
=[ HR(tiju)]' H(ty, :(, j,0) €Dy m ), (16)
(i,j,u)eDkn,nmn

where

H,, : (i, j,v)e D,

knlhmp )

= [Thd (G j.o). @ 5 0 )R ) R )]

(,5.0)( 1" 0NZmy
d((i,J, o), (", 1%, ")
— - +(- )+ -0,

tijva ti'j’v’ € (-OO’ +OO)7 ((IY j’ l)), (i’, j’ﬁ U’)) € anlnmn’
R(t) is a reliability function of the nanocomponent,

h:N,x<0,1>2—-<0,1>, (17)
lim h(k,x,y) =1 x,y € <0,1>, (18)

h(k,x,y) = h(k,y,x), X,y € <0,1> k € N, (19)
hk,1,y)=1,y € <0,1>,k € N, (20)
h(k,x,y) is increasing for fixed x,y € <0,1>

and for fixed k € N, x € <0, 1 >, (21)

(1) :exp(—\7(t)), t € (o0, +o0) is a non-degenerate
reliability function, a, > 0, b, € (-0, +0),

h(1, R(aqt + by), R(ant + by)) = 1 - o(1/n?), (22)
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then
lim Rk 1o, (apt+b,) = f)?(t)forteC— (23)
n—+oo
if and only if
I|m nF(at+b,)=V(t) forteCy. (24)
n—>+
Proof. Obviously function
Rkn,ln,m (IJU (I J’U) € I:)klm ) tlIU € ( 0, +OO)
(i, j,v)e Dknlnmn '
given by (16), is a joint reliability function.
Moreover,
lim P, >t T, >t =
A0 jo) (i ) oo (rlju > ijor 'i'j'v > i'j'v )
_ lim Rknvlnxmn (—0,...;~0, tijU ,—00,...,~00,

d((l J.0),(1% 0 >+

0, L, 1, —00,...,—00) =

= lim R(t: JR(t:
d((,jo) (0" o) -+ (t0 )R )

~h[d((i,j,0), G’jv")), R(ti), R(ti)] =
= R(tij) ‘R(tiy7),

—%0,. i'j'u

for tijl)! ti_’j'l}' € (—CD, +CD), ((I! ja D)’ (i”j,’ D,)) € anlnmn ’

so this model of the nanosystem fulfills
Assumption 2.1.
Further, for simplify our notation we mark by
gi(abet) =
4(a-i)(b—j)(c- u)
- [Ih(fe+ P+ RORE)
P
v=1,...C
gi(a,b,c,t) =
—i)(b-j)e
Hh(x/- SRORD)
gg(a,b,t) = TThG. R, R,

i=,...a

where t € (-oo, +o0) and a,b,c € N..
We can clearly see that

H(tt t):gl(kn’ln’mnvt)'
gz(kn' nvmnit)'gz(lmmn’ n’t) gz(mn’ n’ nv)
gS(I(nf n nft) g3('n’ n n’t) gS(mn’ nn’t)

fort e (o0, +o0).
According to conditions (17) and (21) we obtain for
t € (—o0, +0)
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[hLR(E), RO <H(LL,...t) <1.

Introduce constants a, > 0, b, € (-0, +o0), which
satisfy the condition (22). Thus, from (22) we get

lim [N R(@,t+b,), Ryt + b )™ =
= lim[1-o(l/n 2 =
=nI|m exp[-o(1/n?)-13n*]=exp[0] =1,

for all t € (—oo, +0). It follows that, according to the
sgueeze theorem

lim H(a,t+b,,...

N—+o0

at+h ) =1t e (=o,+0). (25)

Next, assume that

lim nF(a,t+b,)=V(t),teC.,

N—-00

for a, > 0, b, € (-0, +o0). Of course, using (25) for
teC; we receive

lim Rk, 1,m (@ t+b)= lim[R(a,t+b,)]" =
N—+o0 N—+o0
= lim exp[-nF(a,t +b,)]= exp[—\7(t)] =972 (t).
N—-+oo
Further, assume that

lim R, 1,.m, (a,t+b,) =% (t) =exp[V (t)],

for teCy;, a,>0, b, € (-o0, +o0). Hence, according
to (25) we can see that

lim Ri,1,m (a,t+b,) = lim[R(a t+b )]" =
=exp[-V ()],
And

lim[R(a,t +b,)]" = lim exp[-nF(a,t +b,)]=

=exp[V (t)],teC-,
S0 consequently

lim nF(a,t+b,) =V (t) for teC;,
nN—-+oo
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what completes the proof. 0

Theorem 5.2. The only non-degenerate limit
reliability functions of the homogeneous regular
three-dimensional series system with dependent
nanocomponents, which fulfill assumptions from

Theorem 5.1, are same as functions from
Theorem 4.1.
Example 5.1. Consider function h given by

hk, x,y) = 1-c[(1 - )(1-y)]*/ k (26)

force (0,1>,9>1,x,ye<0,1>k e N.,.
It is easy to prove that function h satisfies conditions
(17)-(21). Moreover, if we assume that

lim nF(at+b,)=V(t) forteCy,

n—+o0
for a, >0, b, € (-0, +0), we will obtain

i NLR@,E+D) R@,E+b,)) -1
N—-+o0 1/n2

jim —C (= R(@,t+b)] [1-R(a,t +b,)])"
N—>+0 1/ n2
lim —c-(F(a,t+b,))f?-n? =

N—+o0

lim—c-(nF(a,t+hb,)f? -n*% =
N—>+o

=—[V()’*-0=0,c e (0,1>q>1,teCy.

Thus,
h(1, R(at + by), R(a.t + by)) = 1 - o(1/n?

forn e N4, teC\7.

Theorem 5.3. If the joint reliability function of the
homogeneous regular series-parallel nanosystem is
the same as the joint reliability function given by
(16), fulfils conditions (17)-(22) and

(i) ky=k=>0,Il,- my— +oo,

(i) (1) is a non-degenerate reliability
function,

(iii) a,>0, b, € (-0, +0),

then

lim R m, (@t+b,)=2(t)forte Cy

n—+o0

if and only if

26

lim [R(ant +by) "™ = F(t) for t € Cyy

where #(t) is a non-degenerate reliability function
and

RO =1-[1- RO fort e (~o, +m).

Proof: First we must answer the question how the
reliability function of the homogeneous regular
series-parallel  nanosystem with  dependent
nanocomponents which satisfies Assumption 2.1
looks like. From (8) we get

..........

v=l,...,mp
=P( i > ).
i=1..K j=Llp,
v=l,..,mp

Further, for simplify our notation, we denote by

A®= (K >thi=1.. kte (-, +x).

=
v=l,...m,

Hence,

Rey,m ©= D P(A ®)+ 7)

i=1,...k

= D PAONA D)+

i =1, Kk,
ih<iy

+(D)* - P(A (1) M. A (), t e (—oo, +o0).

Moreover fori=1,..., k, t € (—0, +0),

P(A (1)= Rk,ln,mn (—0,...;/0,
t,...,t, —OO,,_,,—OO):
H’_/
positions (i—1)-1,-mp +1,..,i-15-mp

=R""™ () - H(t),
where

H®) = []nh(i, Ry, Ry ™. (28)

=1,

- TIh(/ 2+ 0% Re)RE) T

j=l vln
v=l,...m,
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because P(A (t))could be pondered as the reliability =~ Wheret e (—co, +0) and i, y,.... I, £ =1,.... k.
function of homogeneous regular two-dimensional Consequently for t € (-0, +0)
series nanosystem composed of |,'m, € N.

nanocomponents. Similarly Iim Ry, m, (@t +D,) =
P(Ai (t) A Ai (t)) _ (Rlnmn (t) ) ﬁ(t))g ) = I|m ngJE( :I-)é I1<I2<'”<zlz_|13“§fi (t) MN...MN Ag (t)) =
HH (.72 —m), (29) = Sy
M2 =i nigs e=l,...k
m<n . ( | Z [r!mP(Ail OnN.n Aig D1=
Where h<ip<.<i =l..k

= YLD D IimR™M™(at+by)]=
e=l,..k iy<ip<..<i, =1,k "%

ﬁ(t, i) = h(i, R(t), R(t))"™ - (30)

4(1 —j)(m v e+l . elym, _
. Hh[\/m, R(),RO)] (=M, —0) Z[( 1 [ j l|1I_r)£10|:2 (a,t+b))]

iy,
i n=i)my =1-[1- 2 [ 1)6[ ] lim R*"™ (a,t +b.)]]=
I 2 ReROT _lzk o

Iy =1-[1—limR"™ (a,t+b,)]". (31)
N—o0
- 21, (m,—v)
'U}_[mh[\/ iZ+0%, R(t),R(1)] ' Further, assume that
1 In' h
i € Nu t e (<0, +o0) and i, i,..., iy, &= 1,..., k. lim[R(a;t+b,)]"™ =, (1), t € Cy, (32)

Since according to (17), (22) we have
where #,(t) is a non-degenerate reliability function,

ﬁ(t i)>h(L, R(),RE) ™, a,> 0, by € (o0, +o0), t € (~00, +o0). Hence,
H(t) > RE),RO) ™, imR,, , (a,t+bh,) =
fori=1,...,k t e (~oo, +o), then =1-[1-limR"™ (a;t +b,)] =

=1—|1— k = —00,+00
RM™ (1) > P(A () M. A (1) > =1-[= 25O = ().t (~oote)
>RM™ (1) -h(L R, RO ™ 2 Next, we assume that

, lim R, ., (a,t+b,)=9(t)fort e Cy (33)
> R*"™ (1) - h(L, R(t), R(t))"™" . N0 TN

. . Thus
Moreover, using (22) we receive

) o2 limR,, . (a,t+hb,)=

lim[h(, R(a,t +b,),R(at +b,))]" = N My

i ) =1-[1—limR"™ (a,t+b, )] =

= lim[1-o(/n®)]" =1, ins
o0 =1-[1- 2,1 = F(t),t € (~o0,+0).

fort € (-0, +0), @, > 0, b, € (-o0, +o0). It follows

that, according to the squeeze theorem so finally
limP(A (a,t+b,)N..AA (a,t+b,))= m[R(angn)]'"'m“ =, (1).teCyy . 0
n—o0 1 ¢

:|m Rg'lnmn ..
o (@t-+bn), Theorem 5.4. The only non-degenerate limit

reliability functions of the homogeneous regular

27
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three-dimensional  series-parallel
dependent  nanocomponents,
assumptions from Theorem 5.3,
functions from Theorem 4.2.

system  with
which  satisfy
are same as

6. An example

Example 6.1. Mull over the three-dimensional series
nanosystem which reliability function is given by
(16) where function

h(k, %, y) = 1- [(1-X)(L - y)] ™ /K, (34)
where X,y € <0,1>,k € N..

Obviously h(k, x, y) given by (34) is an example of
the function (26), so fulfills conditions (17)-(22).
Moreover, assume that the survival function of
nanocomponents

R(t) = {exp[ M]t t<>00 for 1> 0. (35)
Introduce constants
an=1/(An), b, =0,n € N, (36)
then we receive
nI_|>rI1OOnF(a t+b,) = I|m n-(1—exp[-t/n]) =
_nILTwn-(t/n—o(lln))_t,t>O, (37)
and
lim nF(a,t+b,)=0,t <0. (38)

N—-+o00

Using this fact and Theorem 5.1 we obtain that the

asymptotic reliability function of considered
nanosystem is
1, t<0
fh’t_llmR m, (t/(An
® oo, (E(20)) = {exp[t]t>0

Assume that kgoo =4, Igoo =15, Mggy = 15, A = 1/90.
Then the exact reliability function of the nanosystem
Rags15(t) = exp(=10t) -

(1- eftlgo)z.z

]

4(4-i)(15-j)(15-v)
SIS
i=1,...4,

j=1,...15,
v=l,...15

28

e_t/go)zz 2(4-i)(15-})15
[[] b-—F—"] 2
i=1,...4, \/I +J
j=1..15
—t/90)22 2(15-i)(15-j)4
! [1-——] 1-
et
J=l,...,15
4/90)22 (15-i)-60 )
T (I
i=,...15
4/90)22 (4-i)-225
[ H [l-—F—F—"] ]1,t>0,
i=l,..4

and
§4,15,15(t) =1,t<0,

could be approximated by

Ruass(t) = 5, (10t) = {1 t<0 (39

exp[-10t],t>0.

This follows from (13).

Similar consideration we can perform for the three-
dimensional series-parallel nanosystem in which
reliability function is given by (16), function h by
(34), R(t) by (35), and k, = k > 0 is a positive
constant.

It this case, since for constants (36) according to (37)

and (38)
0,t <0,
lim nF(at+b)=1 "
N—-+o0 t’ t> O’
then
lim[R(a,t+b)]"™
=(lim[R@a,t+b)I")" =(limL1-F(at+b)I')"

1 t<0

_ I - F t b 1/k —
(nLrﬂexp[ nF(at+b,)]) {exp[—t/k],tzo-

From this fact and Theorem 5.3 follow that the
asymptotic reliability function of this series-parallel
nanosystem is

7,(t) = limR

+

Next, assume that lggp, Mggo = 15, k =4 and A = 1/90.

. (21C)

t<0
[1—exp[-t/K]IM*, t>0.
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Using (27)-(30) we obtain the exact reliability

function of this nanosystem

R,15:5(1) = 4P(A) - [P(AM)Y

CBH () + 2H (t,2) + H (t,3)) + [P(A®D)T
(2HED H(t,2) + 2H (LD H (t,2)H (t,3)
—[P(AD)F - H D) H(t,2)?H(,3),t >0,

where
P(A(t)) = H(t)-exp[-5t/2],t >0,
H L @oemy
0= 0
22 (15-j)15

111 [1_ﬂ] P.t>0,

(1_ e—t/90)2,2 4(15-)(15-v)

Hti)= [ L-————=1
18 r+J]+v

(1 _ e—t/90)2 2 2(15-)15

Inil-~1 T

j=1.., 15 |

—t/90y2.2 225
A= )7 ief23ht>0,
I

and
R4,15,15(t) =1t<0,
which could be approximated by

1, t<0
R4,15,15(t) =%, (10t) = 1

The expected values of considered series nanosystem
lifetime T,, series-parallel nanosystem lifetime T,
and their standard deviations, in seconds, calculated
on the basis of the above approximate result,

respectively are:
E[T,] = 0.10 sec, o1 = 0.10 sec,
and

E[T,] = 0.83sec, o» =3.11s.

—[1—exp[-5t/2]]*, t>0.

Tables 1-2 and Figures 2-3 are presenting the
differences between the values of nanosystem’s exact
reliability functions and the values of the
nanosystem’s approximate reliability functions. We
can see that they are very small, what justifies the
correctness of the approximation.

Table 1. The differences between the values of the
series nanosystem exact and approximate reliability
function

t[s] | Razsas(t) .‘)_?2[t bn] Raas1s(t) — 7, (10t)
n
0 1 1. 0
0.025(0.778009| 0.778801 -0.000792
0.050(0.603703| 0.606531 -0.002827
0.075(0.467014| 0.472367 -0.005353
0.100{0.360071| 0.367879 -0.007809
0.125]0.276639| 0.286505 -0.009866
0.150|0.211756| 0.223130 -0.011374
0.175(0.161473| 0.173774 -0.012301
0.200(0.122645| 0.135335 -0.012690
0.225(0.092778| 0.105399 -0.012621
0.250(0.069895| 0.082085 -0.012190
0.275]0.052434| 0.063928 -0.011494
0.300(0.039166| 0.049787 -0.010621
0.325(0.029128| 0.038774 -0.009647
0.350(0.021566| 0.030197 -0.008631
0.375[0.015896| 0.023518 -0.007622
0.400(0.011664| 0.018316 -0.006652

LK Ras.5(), #((t — br)/ay)

0.1 0.2 0.3 0.4 0.5t

Figure 2. The graphs of the exact and approximate
reliability functions of the exemplary homogeneous
regular series three-dimensional nanosystem



Kotowrocki Krzysztof, Torbicki Mateusz
Reliability of large three-dimensional nanosystems

Ry15,15(t), F((t — bn)/ay)
0.8t

0.6 |
0.4}
0.2}

2t

0.5 1 1.5

Figure 3. The graphs of the exact and approximate
reliability functions of the exemplary homogeneous
regular series-parallel three-dimensional nanosystem

Table 2. The differences between the values of the
series-parallel nanosystem exact and approximate
reliability function

t[s] | Ragsas(t) | 9, [t b, 1 | Rasis(®) —F2,(10t)
n
0 1 1 0
0.1 10.998025| 0.997606 0.000419
0.2 10.979219| 0.976031 0.003187
0.3 [0.929011| 0.922495 0.006516
0.4 [0.846572| 0.840339 0.006234
0.5 [0.741330( 0.740842 0.000487
0.6 |0.626213| 0.635755 -0.009543
0.7 [0.512777| 0.533990 -0.021213
0.8 10.409031| 0.441027 -0.031996
0.9 [0.319236| 0.359503 -0.040267
1.0 10.244686| 0.290079 -0.045394
1.1 10.184737| 0.232219 -0.047482
1.2 10.137713| 0.184763 -0.047050
1.3 10.101546| 0.146307 -0.044761
1.4 10.074165| 0.115428 -0.041262
1.5 10.053705| 0.090804 -0.037099
1.6 10.038583| 0.071274 -0.032691
1.7 10.027515| 0.055848 -0.028333
1.8 |0.019483| 0.043701 -0.024218
1.9 |0.013700| 0.034160 -0.020460

7. Conclusion

The asymptotic reliability function of the three-
dimensional homogeneous regular series nanosystem
in  which times wup to displacement of
nanocomponents, which make up this nanosystem,
from their initial positions are dependent non-
negative continuous random variables and the
dependence  between  two  nanocomponents
decreasing with increasing the distance between
them, was investigated in [3] with using copula

30

functions to create the joint reliability function of this
nanosystem.

In this paper was showed one example of the
reliability function of the three-dimensional
homogeneous regular series and series-parallel
nanosystem which takes into account dependencies
between times up to displacement of
nanocomponents and its asymptotic reliability
function is the same as a asymptotic reliability
function of this nanosystem when times up to
displacement of nanocomponents are independent.
To investigate of the limit reliability function of
these reliability function we used modified theorems
which investigate limit reliability function of the
three-dimensional homogeneous regular series and
series-parallel nanosystem with independent times up
to displacement of nanocomponents. This allowed us
to determinate the classes of Ilimit reliability
functions and approximate the nanosystem exact
reliability function which is given by very
complicated formula when times up to displacement
of nanocomponents are dependent on each other.
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