PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Manipulating far-field ring-shaped array according to the superposition of weight functions

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In order to control the distribution characteristics of the far-field ring-shaped array, we introduce a new light source to produce adjustable far-field distribution by the method of weight function superposition. It has been shown that, by changing the parameters of the light source, one can obtain far-field with various distribution, including distribution with decrease in spectral intensity of specified rings, distribution with disappearances of specified rings, distribution with different spectral intensity of part of lobes in the continuous rings, distribution with part of the lobes in specified rings disappearing and distribution with some lobes in specified rings being stronger. These results will produce some novel far-field distributions which may provide a new idea for further study concerning about the manipulations of far-field array distribution.
Czasopismo
Rocznik
Strony
87--98
Opis fizyczny
Bibliogr. 35 poz., rys.
Twórcy
  • Department of Physics, Sichuan Normal University, Chengdu 610068, China
autor
  • Department of Physics, Sichuan Normal University, Chengdu 610068, China
autor
  • Department of Physics, Sichuan Normal University, Chengdu 610068, China
autor
  • Department of Physics, Sichuan Normal University, Chengdu 610068, China
autor
  • Department of Physics, Sichuan Normal University, Chengdu 610068, China
Bibliografia
  • [1] WOLF E., COLLETT E., Partially coherent sources which produce the same far-field intensity distribution as a laser, Optics Communications 25(3), 1978: 293–296, DOI: 10.1016/0030-4018(78)90131-1.
  • [2] MARTÍNEZ-HERRERO R., MEJÍAS P.M., Radiometric definitions for partially coherent sources, Journal of the Optical Society of America A 1(5), 1984: 556–558, DOI: 10.1364/JOSAA.1.000556.
  • [3] GORI F., GUATTARI G., PADOVANI C., Modal expansion for J0-correlated Schell-model sources, Optics Communications 64(4), 1987: 311–316, DOI: 10.1016/0030-4018(87)90242-2.
  • [4] SIMON R., MUKUNDA N., Twisted Gaussian Schell-model beams, Journal of the Optical Society of America A 10(1), 1993: 95–109, DOI: 10.1364/JOSAA.10.000095.
  • [5] GORI F., BAGINI V., SANTARSIERO M., FREZZA F., SCHETTINI G., SPAGNOLO G.S., Coherent and partially coherent twisting beams, Optical Review 1(2), 1994: 143–145, DOI: 10.1007/BF03254845.
  • [6] PONOMARENKO S.A., A class of partially coherent beams carrying optical vortices, Journal of the Optical Society of America A 18(1), 2001: 150–156, DOI: 10.1364/JOSAA.18.000150.
  • [7] SHCHEGROV A.V., WOLF E., Partially coherent conical beams, Optics Letters 25(3), 2000: 141–143, DOI: 10.1364/OL.25.000141.
  • [8] BOGATYRYOVA G.V., FEL’DE C.V., POLYANSKII P.V., PONOMARENKO S.A., SOSKIN M.S., WOLF E., Partially coherent vortex beams with a separable phase, Optics Letters 28(11), 2003: 878–880, DOI: 10.1364/OL.28.000878.
  • [9] KOROTKOVA O., ANDREWS L.C., PHILLIPS R.L., Model for a partially coherent Gaussian beam in atmospheric turbulence with application in Lasercom, Optical Engineering 43(2), 2004: 330–341, DOI: 10.1117/1.1636185.
  • [10] VAHIMAA P., TURUNEN J., Finite-elementary-source model for partially coherent radiation, Optics Express 14(4), 2006: 1376–1381, DOI: 10.1364/OE.14.001376.
  • [11] GORI F., SANTARSIERO M., BORGHI R., LI C.F., Partially correlated thin annular sources: the scalar case, Journal of the Optical Society of America A 25(11), 2008: 2826–2832, DOI: 10.1364/JOSAA.25.002826.
  • [12] MARTÍNEZ-HERRERO R., MEJÍAS P.M., GORI F., Genuine cross-spectral densities and pseudo-modal expansions, Optics Letters 34(9), 2009: 1399–1401, DOI: 10.1364/OL.34.001399.
  • [13] LAJUNEN H., SAASTAMOINEN T., Propagation characteristics of partially coherent beams with spatially varying correlations, Optics Letters 36(20), 2011: 4104–4106, DOI: 10.1364/OL.36.004104.
  • [14] KOROTKOVA O., SAHIN S., SHCHEPAKINA E., Multi-Gaussian Schell-model beams, Journal of the Optical Society of America A 29(10), 2012: 2159–2164, DOI: 10.1364/JOSAA.29.002159.
  • [15] MANDEL L., WOLF E., SHAPIRO J.H., Optical coherence and quantum optics, Physics Today 49(5) 1996: 68–70, DOI: 10.1063/1.2807623.
  • [16] CAI Y., WANG F., Tensor method for treating the propagation of scalar and electromagnetic Gaussian Schell-model beams: A review, The Open Optics Journal 4(5), 2010: 1–20, DOI: 10.2174/1874328501004010001.
  • [17] CAI Y., Generation of various partially coherent beams and their propagation properties in turbulent atmosphere: A review, Proc. SPIE 7924, Atmospheric and Oceanic Propagation of Electromagnetic Waves V, 2011: 792402, DOI: 10.1117/12.878821.
  • [18] CAI Y., WANG F., ZHAO C., ZHU S., WU G., DONG Y., Partially coherent vector beams: from theory to experiment, [In] Vectorial Optical Fields:Fundamentals and Applications, Chap. 7: 221–273.
  • [19] LIU X., WANG F., WEI C., CAI Y., Experimental study of turbulence-induced beam wander and deformation of a partially coherent beam, Optics Letters 39(11), 2014: 3336–3339, DOI: 10.1364/OL.39.003336.
  • [20] LIU X., SHEN Y., LIU L., WANG F., CAI Y., Experimental demonstration of vortex phase-induced reduction in scintillation of a partially coherent beam, Optics Letters 38(24), 2013: 5323–5326, DOI: 10.1364/OL.38.005323.
  • [21] WANG F., LIU X., LIU L., YUAN Y., CAI Y., Experimental study of the scintillation index of a radially polarized beam with controllable spatial coherence, Applied Physics Letters 103(9), 2013: 091102, DOI: 10.1063/1.4819202.
  • [22] DONG Y., WANG F., ZHAO C., CAI Y., Effect of spatial coherence on propagation, tight focusing and radiation forces of an azimuthally polarized beam, Physical Review A 86(1), 2012: 013840, DOI: 10.1103/PhysRevA.86.013840.
  • [23] ZHAO C., WANG F., DONG Y., HAN Y., CAI Y., Effect of spatial coherence on determining the topological charge of a vortex beam, Applied Physics Letters 101(26), 2012: 261104, DOI: 10.1063/1.4773236.
  • [24] MEI Z., KOROTKOVA O., Random sources generating ring-shaped beams, Optics Letters 38(2), 2013: 91–93, DOI: 10.1364/OL.38.000091.
  • [25] ZHENG S., YUAN C., CHENG K., JI X., WANG T., Ring-shaped hollow multi-Gaussian Schell-model array beams, Optik 218, 2020: 165025, DOI: 10.1016/j.ijleo.2020.165025.
  • [26] MACDONALD M.P., PATERSON L., VOLKE-SEPULVEDA K., ARLT J., SIBBETT W., DHOLAKIA K., Creation and manipulation of three-dimensional optically trapped structures, Science, 296(5570), 2002: 1101–1103, DOI: 10.1126/science.1069571.
  • [27] FRANKE-ARNOLD S., LEACH J., PADGETT M.J., LEMBESSIS V.E., ELLINAS D., WRIGHT A.J., GIRKIN J.M., OHBERG P., ARNOLD A.S., Optical ferris wheel for ultracold atoms, Optics Express 15(14), 2007: 8619–8625, DOI: 10.1364/OE.15.008619.
  • [28] AMICO L., OSTERLOH A., CATALIOTTI F., Quantum many particle systems in ring-shaped optical lattices, Physical Review Letters 95(6), 2005: 063201, DOI: 10.1103/PhysRevLett.95.063201.
  • [29] JEZEK D.M., CATALDO H.M., Multimode model for an atomic Bose–Einstein condensate in a ring-shaped optical lattice, Physical Review A 88(1), 2013: 013636, DOI: 10.1103/PhysRevA.88.013636.
  • [30] CATALDO H.M., JEZEK D.M., Bose-Hubbard model in a ring-shaped optical lattice with high filling factors, Physical Review A 84(1), 2011: 013602, DOI: 10.1103/PhysRevA.84.013602.
  • [31] AMICO L., AGHAMALYAN D., AUKSZTOL F., CREPAZ H., DUMKE R., KWEK L.C., Superfluid qubit systems with ring shaped optical lattices, Scientific Reports 4(1), 2014: 04298, DOI: 10.1038/srep04298.
  • [32] ZHU Z., WU H., CHENG K., WANG T., Ring-shaped optical coherence lattice distribution produced by light waves on scattering, Optics Communications 434, 2019: 157–162, DOI: 10.1016/j.optcom.2018.10.050.
  • [33] MANDEL L., WOLF E., Optical Coherence and Quantum Optics, Cambridge University Press.
  • [34] GORI F., SANTARSIERO M., Devising genuine spatial correlation functions, Optics Letters 32(24), 2007: 3531–3533, DOI: 10.1364/OL.32.003531.
  • [35] MAO Y., MEI Z., Random sources generating ring-shaped optical lattice, Optics Communications 381, 2016: 222–226, DOI: 10.1016/j.optcom.2016.06.091.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e5b1a93f-b008-4320-b9c8-5e7c280de076
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.