PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical analysis of seal force in contacting finger seal

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A finger seal is a flexible sealing device widely used in high-temperature and high-pressure environments such as gas turbines. Its force analysis is the key to the design and optimization of finger seal performance. At present, most of the research on force analysis of finger seals is focused on the whole seal ring, but each finger beam has a different contact performance with the shaft. In this paper, a new force analysis method for contacting finger seals is proposed, as well as the model of finger seals with or without eccentricity is established to analyze the force of a single finger beam. The curved flexible finger beam is transformed into a straight one loaded with a certain moment at the end of it. The force acting on the finger beam is studied and compared with the existing reference to demonstrate the feasibility of the analysis method. By changing each parameter of the finger seal, the relationship between seal force and structural parameter is investigated. It shows that this method is meaningful to the calculation results of seal force for single finger beam and can promote the development of finger seal and make it further in engineering application.
Rocznik
Strony
art. no. e153840
Opis fizyczny
Bibliogr. 26 poz., rys., wykr.
Twórcy
autor
  • School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
autor
  • School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
autor
  • School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
  • Institute of Structural Mechanics and Lightweight Design, RWTH Aachen University, Wüllnerstraße 7, 52062 Aachen, Germany
Bibliografia
  • [1] Y.N. Dabwan, G. Pei, T. Hu, H. Zhang, and B. Zhao, “Development and assessment of a low-emissions gas turbine system for power utilities incorporating intercooling and solar preheating,” Appl. Therm. Eng., vol. 218, p. 119335, 2023, doi: 10.1016/j.applthermaleng.2022.119335.
  • [2] M. Kuhr and P. Pelz, “Experimental identification of the force and moment characteristic of symmetrically and non-symmetrically profiled annular seals,” Bull. Pol. Acad. Sci. Tech. Sci., vol 71, no. 6, p. 147062, 2023, doi: 10.24425/bpasts.2023.147062.
  • [3] Y. Wei, J. Guo, and X. Chen, “Nonlinear dynamics analysis of labyrinth seal-rotor system considering internal friction in couplings,” Commun. Nonlinear Sci. Num. Simul., vol. 143, p. 108640, 2025, doi: 10.1016/j.cnsns.2025.108640.
  • [4] Y. Wei et al., “Analysis of non-contact finger seal force based on deformation of the finger pad,” J. Mech. Sci. Technol., vol. 38, no. 9, pp. 4721–4732, 2024, doi: 10.1007/s12206-024-0809-2.
  • [5] Y. Wei, Z. Xiao, X. Chen, X. Gu, and K.-U. Schröder, “A bearing fault data augmentation method based on hybrid-diversity loss diffusion model and parameter transfer,” Reliab. Eng. Syst. Saf., vol. 253, p. 110567, 2025, doi: 10.1016/j.ress.2024.110567.
  • [6] G. Arora, M. Proctor, and B. Steinetz, “Pressure balanced, low hysteresis, finger seal test results,” in 35th Joint Propulsion Conference and Exhibit, 1999, pp. 2686.
  • [7] M.J. Braun, H.M. Pierson, and V.V. Kudriavtsev, “Finger seal solid modeling design and some solid/fluid interaction considerations,” Tribol. Trans., vol. 46, no. 4, pp. 566–575, 2003, doi: 10.1080/10402000308982665.
  • [8] M.J. Braun, H.M. Pierson, and V.V. Kudriavtsev, “Thermofluids considerations and the dynamic behavior of a finger seal assembly,” Tribol. Trans., vol. 48, no. 4, pp. 531–547, 2005, doi: 10.1080/05698190500385104.
  • [9] G. Chen, F. Lu, Q. Yu, and H. Su, “Dynamic analysis of finger seal using equivalent model based on distributed mass method,” Proc. Inst. Mech. Eng. Part C-J. Eng. Mech. Eng. Sci., vol. 228, no. 16, pp. 2992–3005, 2014, doi: 10.1177/0954406214525364.
  • [10] G. Chen, Q. Yu and H. Su, “Dynamic analysis of C/C composite finger seal,” Chin. J. Aeronaut., vol. 27, no. 3, pp. 745–758, 2014, doi: 10.1016/j.cja.2014.04.029.
  • [11] L. Wang, G. Chen, and H. Su, “Effect of temperature on the dynamic performance of C/C composite finger seal,” Proc. Inst. Mech. Eng. Part G-J. Aerosp. Eng., vol. 230, no. 12, pp. 2249–2264, 2016, doi: 10.1177/0954410015623303.
  • [12] L. Wang, G. Chen, and H. Su, “Effect of work status on leakage and contact pressure of C/C composite finger seal,” Proc. Inst. Mech. Eng. Part C-J. Eng. Mech. Eng. Sci., vol. 231, no. 5, pp. 925–940, 2017, doi: 10.1177/0954406215625677.
  • [13] L. Wang, G. Chen, and H. Su, “Impact dynamic analysis of C/C composite finger seal,” Proc. Inst. Mech. Eng. Part G-J. Aerosp. Eng., vol. 231, no. 7, pp. 1225–1237, 2017, doi: 10.1177/0954410016650215.
  • [14] L. Wang, Y. Wang, and H. Sun, “Dynamic analysis and experimental verification of the carbon–carbon composite finger seal under complex working states,” Proc. Inst. Mech. Eng. Part G-J. Aerosp. Eng., vol. 233, no. 8, pp. 2914–2922, 2019, doi: 10.1177/ 0954410018788790.
  • [15] L. Guoqing, Z. Qian, and G. Lei, “Leakage and wear characteristics of finger seal in hot/cold state for aero-engine,” Tribol. Int., vol. 127, pp. 209–218, 2018, doi: 10.1016/j.triboint.2018.06.008.
  • [16] H. Zhao, G. Chen, and L. Wang, “Dynamic analysis of finger seal in the complex working state,” Proc. Inst. Mech. Eng. Part G-J. Aerosp. Eng., vol. 233, no. 2, pp. 125–137, 2019, doi: 10.1177/0954410017729714.
  • [17] H. Zhao, H. Su, and G. Chen, “Analysis of total leakage of finger seal with side leakage flow,” Tribol. Int., vol. 150, p. 106371, 2020, doi: 10.1016/j.triboint.2020.106371.
  • [18] Y. Zhang, M. Yin and Q. Zeng, “Theoretical and experimental investigation of variable stiffness finger seal,” Tribol. Trans., vol. 63, no. 4, pp. 634–646, 2020, doi: 10.1080/10402004.2020.1730532.
  • [19] H. Zhao, H. Su and G. Chen, “Study on the leakage and interstage pressure drop characteristics of two-stage finger seal,” Appl. Sci., vol. 11, no. 5, p. 2239, 2021, doi: 10.3390/app11052239.
  • [20] Y. Zhang, M. Yin and Q. Zeng, “Theoretical and experimental studies on the optimization of finger seal,” J. Adv. Mech. Des. Syst. Manuf., vol. 14, no. 7, p. JAMDSM0107, 2020, doi: 10.1299/jamdsm.2020jamdsm0107.
  • [21] S. Zhang, Y. Jiao, and Z. Chen, “Static characteristics of finger seal considering contact between fingers and rotor,” Shock Vibr., p. 5801325, 2022, doi: 10.1155/2022/5801325.
  • [22] S. Zhang, Y. Xu, R. Zhao, Y. Jiao, and Z. Chen, “Dynamic analysis and independent high-order nonlinear dynamics of a rotor-bearing-finger seal system,” Int. J. Appl. Mech., vol. 15, no. 7, p. 2350051, 2023, doi: 10.1142/S1758825123500515.
  • [23] P. Boudreau and M. Picard, “Non-contacting finger seal piston for oil less engines,” SAE Int. J. Adv. Curr. Pract. Mobil., vol. 2, no. 5, pp. 2828–2838, 2020, doi: 10.4271/2020-01-1096.
  • [24] Q. Wang, Y. Hu, and H. Ji, “Leakage, heat transfer and thermal deformation analysis method for contacting finger seals based on coupled porous media and real structure models,” Proc. Inst. Mech. Eng. Part C-J. Eng. Mech. Eng. Sci., vol. 234, no. 10, pp. 2077–2093, 2020, doi: 10.1177/0954406219900219.
  • [25] Y. Yu, Q. Li, and Q. Xu, “Pseudo-rigid-body dynamic modeling and analysis of compliant mechanisms,” Proc. Inst. Mech. Eng. Part C-J. Eng. Mech. Eng. Sci., vol. 232, no. 9, pp. 1665–1678, 2018, doi: 10.1177/0954406217707547.
  • [26] P. Ru. “Study on model and dynamic characteristics of finger sealrotor-bearing system,” M.A. thesis, Xi’an University of Technology, China, 2021.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e5b162e2-0b6a-4523-8771-64c228bd06a5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.