PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical analysis of the heating of a die for the extrusion of aluminium alloy profiles in terms of thermochemical treatment

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Thermochemical treatment processes are used to produce a surface layer of the workpiece with improved mechanical properties. One of the important parameters during the gas nitriding processes is the temperature of the surface. In thermochemical treatment processes, there is a problem in precisely determining the surface temperature of heat-treated massive components with complex geometries. This paper presents a simulation of the heating process of a die used to extrude aluminium profiles. The maximum temperature differences calculated in the die volume, on the surface and at the most mechanically stressed edge during the extrusion of the aluminum profiles were analysed. The heating of the die was simulated using commercial transient thermal analysis software. The numerical calculations of the die assumed a boundary condition in the form of the heat transfer coefficient obtained from experimental studies in a thermochemical treatment furnace and the solution of the nonstationary and non-linear inverse problem for the heat conduction equation in the cylinder. The die heating analysis was performed for various heating rates and fan settings. Major differences in the surface temperature and in the volume of the heated die were obtained. Possible ways to improve the productivity and control of thermochemical treatment processes were identified. The paper investigates the heating of a die, which is a massive component with complex geometry. This paper indicates a new way to develop methods for the control of thermochemical processing of massive components with complex geometries.
Rocznik
Strony
159--175
Opis fizyczny
Bibliogr. 37 poz., rys.
Twórcy
  • Poznan University of Technology, Institute of Thermal Engineering, Piotrowo 3a, 60-965, Poznan, Poland
  • Poznan University of Technology, Institute of Thermal Engineering, Piotrowo 3a, 60-965, Poznan, Poland
  • Poznan University of Technology, Institute of Thermal Engineering, Piotrowo 3a, 60-965, Poznan, Poland
Bibliografia
  • [1] Małdziński L., Ostrowska K., Okoniewicz P.: Controlled ZeroFlow gas nitriding as a method increasing the durability of dies for hot extrusion of aluminum profiles. Obróbka Plastyczna Metali 25(2014), 3, 169–183.
  • [2] Miles N., Evans G., Middleditch A.: Bearing lengths for extrusion dies: rationale, current practice and requirements for automation. J. Mater. Process. Tech. 72(1997), 1, 162–176.
  • [3] Arif A.F. M, Sheikh A.K., Qamar S.Z.: A study of die failure mechanisms in aluminum extrusion. J. Mater. Process. Tech. 134(2003), 3, 318–328.
  • [4] Fang W., Tang D., Wang H., Li D., Peng Y.: Optimization of die design for thinwalled flat multi-port tube with the aid of finite element simulation. J. Mater. Process. Tech. 277(2020), 116418.
  • [5] Zinner S., Lenger H., Jesner G., Siller I.: Analysis of the cooling conditions during heat treatment of die casting dies by use of FEM simulation. J. Heat Treat. Mater.67(2012), 2, 95–99.
  • [6] Redl C., Friesenbichle, C., Wieser V.: Numerical simulation of residual stresses during the heat treatment of dies made of hot work tool steel. Mater. Sci. Forum 524- 525(2006), 433–438. doi: 10.4028/www.scientific.net/MSF.524-525.433
  • [7] Oliveira M., Duarte A., Coelho P., Marafona J.: Heat treatment of aluminum extrusion dies and study of their heating by convection/radiation. Int. J. Adv. Manuf. Technol. 78(2015), 1–4, 419–430. doi: 10.1007/s00170-014-6618-5
  • [8] Kang J., Rong Y.: Modeling and simulation of heat transfer in loaded heat treatment furnaces. In: Proc. 1st Int. Surface Engineering Cong. – 13th IFHTSE Cong. 7–10 Oct. 2002, 337–343.
  • [9] Fuhrmann J., Hömberg D.: Numerical simulation of the surface hardening of steel. Int. J. Numer. Method. Heat Fluid Fl. 9(1999), 5–6, 705–724. doi: 10.1108/09615539910286042
  • [10] Heck U., Fritsching U., Bauckhage K.: Fluid flow and heat transfer in gas jet quenching of a cylinder. Int. J. Numer. Method. Heat Fluid Fl. 11(2001), 1, 36–49. doi: 10.1108/09615530110364079
  • [11] Małdziński L.: Thermodynamic, Kinetic and Technological Aspects of Nitrided Layer Production on Iron and Steel in Gas Nitriding Processes. Wydawnictwo Politechniki Poznańskiej, Poznań 2002 (in Polish).
  • [12] Dossett J., Totten G.E., Eds.: ASM Metal Handbook Vol. 4: Steel Heat Treating Fundamentals and Processes. ASM Int., 1991.
  • [13] Judt W., Ciupek B., Urbaniak R.: Numerical study of a heat transfer process in a low power heating boiler equipped with afterburning chamber. Energy 196(2020),117093. doi: 10.1016/j.energy.2020.117093
  • [14] Taler J.: Theory and Practice of Identifying Heat Transfer Processes. Ossolineum,Wrocław – Warszawa – Kraków 1995 (in Polish).
  • [15] Joachimiak M.: Analysis of thermodynamic parameter variability in a chamber of a furnace for thermo-chemical treatment. Energies 14(2021), 10, 2903. doi: 10.3390/en14102903
  • [16] Joachimiak M., Joachimiak D., Ciałkowski M., Małdziński L., Okoniewicz P., Ostrowska K.: Analysis of the heat transfer for processes of the cylinder heating in the heat-treating furnace on the basis of solving the inverse problem. Int. J. Therm. Sci.145(2019), 105985.
  • [17] Frąckowiak A., Spura D., Gampe U., Ciałkowski M.: Determination of heat transfer coefficient in a T-shaped cavity by means of solving the inverse heat conduction problem. Int. J. Numer. Meth. Heat Fluid Fl. 30(2020), 4, 1725–1742.
  • [18] Frąckowiak A., Wróblewska A., Ciałkowski M.: Trefftz numerical functions for solving inverse heat conduction problems. Int. J. Therm. Sci. 177(2022), 107566-1-107566-9.
  • [19] Joachimiak M., Ciałkowski M.: Optimal choice of integral parameter in a process of solving the inverse problem for heat equation. Arch. Thermodyn. 35(2014), 3,265–280.
  • [20] Joachimiak M., Ciałkowski M.: Stable solution to nonstationary inverse heat conduction equation. Arch. Thermodyn. 39(2018), 1, 25–37.
  • [21] Joachimiak M., Joachimiak D., Ciałkowski M.: Investigation on thermal loads in steady-state conditions with the use of the solution to the inverse problem. Heat Transfer Eng. 44(2022), 1–12, 963–969. doi: 10.1080/01457632.2022.2113451
  • [22] Ciałkowski M., Olejnik A., Joachimiak M., Grysa K., Frąckowiak A.: Cauchy type nonlinear inverse problem in a two-layer area. Int. J. Numer. Meth. Heat Fluid Fl.32(2022), 1, 313–331.
  • [23] Joachimiak M.: Choice of the regularization parameter for the Cauchy problem for the Laplace equation. Int. J. Numer. Meth. Heat Fluid Fl. 30(2020), 10, 4475–4492.
  • [24] Joachimiak M., Ciałkowski M., Frąckowiak A.: Stable method for solving the Cauchy problem with the use of Chebyshev polynomials. Int. J. Numer. Meth. Heat Fluid Fl.30(2020), 3, 1441–1456.
  • [25] Joachimiak M., Frąckowiak A., Ciałkowski M.: Solution of inverse heat conduction equation with the use of Chebyshev polynomials. Arch. Thermodyn. 37(2016), 4,73–88.
  • [26] Mierzwiczak M., Chen W., Fu Z.-J.: The singular boundary method for steady-state mnonlinear heat conduction problem with temperature-dependent thermal conductivity. Int. J. Heat Mass Tran. 91(2015), 205–217.
  • [27] Zhang J., Kang J., Guo Z., Xiong S., Liu B., Zou J., Liu S.: Study on the heat transfer coefficients during the heat treatment process of a turbine disk. In: Proc. TMS 2009138th Ann. Meet. Vol. 2: Materials Characterization, Computation, Modeling, 2009,27–32.
  • [28] Lázaro-Nebreda J., Solórzano E., Escudero J., de Saja J.A., Rodríguez-Pérez M.A.: Applicability of solid solution heat treatments to aluminum foams. Metals 2(2012), 4, 508–528. doi: 10.3390/met2040508
  • [29] Asadzadeh M.Z., Raninger P., Prevedel P., Ecker W., Mücke M.: Inverse model for the control of induction heat treatments. Materials (Basel) 12(2019), 17, 2826.doi: 10.3390/ma12172826
  • [30] Yadav R., Tripathi S., Asati S., Das M.K.: A combined neural network and simulated annealing based inverse technique to optimize the heat source control parameters in heat treatment furnaces. Inverse Probl. Sci. Eng. 28(2020), 9, 1265–1286. doi: 10.1080/17415977.2020.1719087
  • [31] Szenasi S., Fried Z., Felde I.: Training of artificial neural network to solve the inverse heat conduction problem, In: Proc. 2020 IEEE 18th World Symp. on Applied Machine Intelligence and Informatics (SAMI), Herlany, 2020, 293–298. doi: 10.1109/SAMI48414.2020.9108733
  • [32] Joachimiak D., Frąckowiak A.: Experimental and numerical analysis of the gas flow in the axisymmetric radial clearance. Energies 13(2020), 21, 5794-1-5794-13.doi: 10.3390/en13215794
  • [33] Incropera F.P., de Witt D.P.: Fundamentals of Heat and Mass Transfer. Wiley, New York 1996.
  • [34] Photo of a die for the extrusion of aluminium alloy profiles. Poznan University of Technology, Institute of Machines and Motor Vehicles, Poznan 2021.
  • [35] Joachimiak M., Ciałkowski M.: Non-linear unsteady inverse boundary problem for heat conduction equation. Arch. Thermodyn. 38(2017), 2, 81–100.
  • [36] https://akrostal.pl/stale/wclv-1-2344/?print=pdf (accessed 16 Nov. 2022).
  • [37] Ansys Transient Thermal Analysis Guide. Ansys 2021R1, Inc.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e5b09932-1548-42ea-920b-070838c9e231
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.