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Abstract. This paper is concerned with the asymptotic behavior of the nonoscillatory
solutions of the forced fractional differential equation with positive and negative terms of
the form

CDα
c y(t) + f(t, x(t)) = e(t) + k(t)xη(t) + h(t, x(t)),

where t ≥ c ≥ 1, α ∈ (0, 1), η ≥ 1 is the ratio of positive odd integers, and CDα
c y denotes

the Caputo fractional derivative of y of order α. The cases

y(t) =
(
a(t)

(
x′(t)

)η)′ and y(t) = a(t)
(
x′(t)

)η

are considered. The approach taken here can be applied to other related fractional differential
equations. Examples are provided to illustrate the relevance of the results obtained.
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1. INTRODUCTION

We consider the forced fractional differential equation with positive and negative terms
CDα

c y(t) + f(t, x(t)) = e(t) + k(t)xη(t) + h(t, x(t)), (1.1)

where t ≥ c > 1, α ∈ (0, 1), η ≥ 1 is the ratio of positive odd integers, and
CDα

c y denotes the Caputo fractional derivative of y of order α as defined by

CDα
c y(t) = 1

Γ(n− α)

t∫

c

(t− s)n−α−1y(n)(s)ds, α ∈ (n− 1, n), n ∈ N.

c© 2020 Authors. Creative Commons CC-BY 4.0 227



228 John R. Graef, Said R. Grace, and Ercan Tunç

If α ∈ (0, 1), this definition was given by Caputo in [4]; for the definition of the Caputo
derivative of order α ∈ (n − 1, n), n ≥ 1, see [1, 5, 6]. We will just consider the case
n = 1, i.e., α ∈ (0, 1), here, but our results can easily be generalized to values of n
greater than 1 (see Section 3). We will be considering the following choices for the
function y, namely,

y(t) =
(
a(t) (x′(t))η

)′ (1.2)
and

y(t) = a(t) (x′(t))η . (1.3)
Throughout the paper, we assume that:
(i) a, k : [c,∞)→ (0,∞) and e : [c,∞)→ R are continuous functions;
(ii) f , h : [c,∞)×R→ R are real-valued continuous functions and there exist continuous

functions b, m : [c,∞) → (0,∞) and positive real numbers λ and γ with λ > γ
such that

xf(t, x) ≥ b(t) |x|λ+1 and 0 ≤ xh(t, x) ≤ m(t) |x|γ+1 for x 6= 0 and t ≥ c.

A function y : [c,∞) → R is a solution of equation (1.1) and either (1.2) or (1.3) if
x ∈ C1([c,∞),R) and y satisfies (1.1). Only those solutions that are continuable and
nontrivial in any neighborhood of ∞ are under consideration here. Such a solution is
said to be oscillatory if there exists a sequence {tn} ⊆ [c,∞) with tn →∞ as n→∞
such that x(tn) = 0, and it is nonoscillatory otherwise.

In recent years, integro-differential and fractional differential equations have gained
considerably more attention due to their applicability to problems in engineering
and other scientific disciplines. For example, they arise as mathematical models for
systems and processes in physics, mechanics, chemistry, aerodynamics, electrodynamics,
and more recently in social networking (see [13]). Additional examples can be found
in [1, 15–17,22–25].

Our aim here is to obtain some new results on the asymptotic behavior of nonoscil-
latory solutions of equation (1.1). We note that this equation is equivalent to the
Volterra type equation

y(t) = c0 + 1
Γ(α)

t∫

c

(t− s)α−1[e(s) + k(s)xη(s) + h(s, x(s))− f(s, x(s))]ds, (1.4)

where c ≥ 1, α ∈ (0, 1), c0 = y(c)
Γ(1) = y(c), and c0 is a real constant.

Oscillation and asymptotic properties of solutions of integro-differential equations
and fractional differential equations are relatively scarce in the literature; some results
can be found in [2, 7, 9, 10, 12, 17–21]. The only results to date for forced fractional
differential equations with positive and negative terms of the type (1.1) appear to be
those in [11] where sufficient conditions for boundedness of nonoscillatory solutions
are obtained. In that paper, η = 1 and, as remarked below, additional conditions were
needed on the function a(t). As a consequence, in the present paper, we are able to
obtain growth estimates on the nonoscillatory solutions of (1.1) (see (2.6) and (2.23)
below).
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The idea to transform a fractional differential equation into a Volterra integral
equation is not new. For example, Medved’ did this for a much simpler equation
in [20, Lemma 2.5]; in this regard also see [21, Lemma 1]. We make use of Young’s
inequality which is not the case for example in [20] and [21]. It is not difficult to see
that the approach we use in this paper can be useful in the study of other types of
fractional differential equations as well.

2. MAIN RESULTS

We will make use of the following two lemmas in the proofs of our main results.
Lemma 2.1 ([3]). Let α and p be positive constants such that p(α− 1) + 1 > 0. Then

t∫

0

(t− s)p(α−1)epsds ≤ Qept, t ≥ 0,

where
Q = Γ (1 + p(α− 1))

p1+p(α−1) ,

and

Γ(x) =
∞∫

0

sx−1e−sds, x > 0,

is the usual Euler-Gamma function.
Lemma 2.2 (Young’s inequality, [14]). If X and Y are nonnegative, δ > 1, and
1/δ + 1/β = 1, then

XY ≤ 1
δ
Xδ + 1

β
Y β , (2.1)

where equality holds if and only if Y = Xδ−1.
For notational purpose, we put

g(t) =
(
λ− γ
γ

)(γ
λ
m(t)

)λ/(λ−γ)
(b(t))γ/(γ−λ)

,

R(t, c) =
t∫

c

a−1/η(s)ds,

and we assume that
R(t, c)→∞ as t→∞. (2.2)

We now give sufficient conditions under which any nonoscillatory solution x of equation
(1.1) with (1.2) satisfies

|x(t)| = O
(
t1/ηet/ηR(t, c)

)
as t→∞.
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Theorem 2.3. Let conditions (i)–(ii) and (2.2) hold and assume that there exist real
numbers p > 1 and 0 < α < 1 such that p(α− 1) + 1 > 0. If

∞∫

c

kq(s)sqRηq(s, c)ds <∞, where q = p

p− 1 , (2.3)

lim
t→∞

t∫

c

(t− s)α−1 |e(s)| ds <∞, (2.4)

and

lim
t→∞

t∫

c

(t− s)α−1g(s)ds <∞, (2.5)

then every nonoscillatory solution x(t) of equation (1.1) with (1.2) satisfies

lim sup
t→∞

|x(t)|
t1/ηet/ηR(t, c) <∞. (2.6)

Proof. Let x(t) be a nonoscillatory solution of equation (1.1) with (1.2), say x(t) > 0
for t ≥ t1 for some t1 ≥ c. Setting F (t) = h(t, x(t))− f(t, x(t)), it follows from (i)–(ii)
and (1.1) that

(
a(t) (x′(t))η

)′ ≤ c0 + 1
Γ(α)

t1∫

c

(t− s)α−1 |F (s)| ds+ 1
Γ(α)

t∫

c

(t− s)α−1 |e(s)| ds

+ 1
Γ(α)

t∫

t1

(t− s)α−1 [
m(s)xγ(s)− b(s)xλ(s)

]
ds

+ 1
Γ(α)

t1∫

c

(t− s)α−1
k(s) |xη(s)| ds

+ 1
Γ(α)

t∫

t1

(t− s)α−1
k(s)xη(s)ds.

(2.7)

Applying (2.1) to
[
m(t)xγ(t)− b(t)xλ(t)

]
with

δ = λ

γ
, X = xγ(t), Y = γ

λ

m(t)
b(t) , and β = λ

λ− γ ,
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we obtain

m(t)xγ(t)− b(t)xλ(t) = λ

γ
b(t)

[
xγ(t)γ

λ

m(t)
b(t) −

γ

λ
(xγ(t))λ/γ

]

= λ

γ
b(t)

[
XY − 1

δ
Xδ

]
≤ λ

γ
b(t)

(
1
β
Y β
)

=
(
λ− γ
γ

)[γ
λ
m(t)

]λ/(λ−γ)
(b(t))γ/(γ−λ) := g(t).

(2.8)

Using (2.8) in (2.7) gives

(
a(t) (x′(t))η

)′ ≤ c0 + 1
Γ(α)

t1∫

c

(t1 − s)α−1 |F (s)| ds+ 1
Γ(α)

t∫

c

(t− s)α−1 |e(s)| ds

+ 1
Γ(α)

t∫

t1

(t− s)α−1
g(s)ds

+ 1
Γ(α)

t1∫

c

(t1 − s)α−1
k(s) |xη(s)| ds

+ 1
Γ(α)

t∫

t1

(t− s)α−1
k(s)xη(s)ds.

(2.9)

In view of (2.4) and (2.5), it follows from (2.9) that

(
a(t) (x′(t))η

)′ ≤ C1 + 1
Γ(α)

t∫

t1

(t− s)α−1
k(s)xη(s)ds, (2.10)

for some constant C1 > 0. Integrating (2.10) from t1 to t gives

a(t) (x′(t))η ≤ a(t1)| (x′(t1))η |+ C1(t− t1) + 1
αΓ(α)

t∫

t1

(t− s)α k(s)xη(s)ds := w(t),

(2.11)
which can be written as

x′(t) ≤
(
w(t)
a(t)

)1/η
. (2.12)
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Noting that w(t) is an increasing function, it follows from (2.12) that

x(t) ≤ x(t1) + w1/η(t)
t∫

t1

a−1/η(s)ds

= x(t1) + w1/η(t)R(t, t1)

=
[
x(t1)
R(t, t1) + w1/η(t)

]
R(t, t1)

≤
[

x(t1)
R(t2, t1) + w1/η(t)

]
R(t, t1)

(2.13)

for t ≥ t2 and any fixed t2 > t1. From (2.13), we see that

x(t)
R(t, t1) ≤ C2 + w1/η(t) for t ≥ t2, (2.14)

where C2 = x(t1)/R(t2, t1) > 0. Applying the elementary inequality

(A+B)µ ≤ 2µ−1(Aµ +Bµ), A,B ≥ 0 and µ ≥ 1, (2.15)

to (2.14) gives
(

x(t)
R(t, t1)

)η
≤ 2η−1(C2)η + 2η−1w(t) for t ≥ t2. (2.16)

In view of the definition of w(t), it follows from (2.16) that
(

x(t)
R(t, t1)

)η
≤ 2η−1(C2)η + 2η−1a(t1)| (x′(t1))η |+ 2η−1C1(t− t1)

+ 2η−1

αΓ(α)

t∫

t1

(t− s)α k(s)xη(s)ds

≤ 2η−1(C2)η + 2η−1a(t1)| (x′(t1))η |+ 2η−1C1t

+ 2η−1t

αΓ(α)

t∫

t1

(t− s)α−1
k(s)xη(s)ds.

(2.17)

From (2.17), we arrive at

(
x(t)

t1/ηR(t, t1)

)η
≤ C3 + 2η−1

αΓ(α)

t∫

t1

(t− s)α−1
k(s)xη(s)ds (2.18)
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for some constant C3 > 0. Applying Hölder’s inequality and Lemma 2.1 to the integral
on the right in (2.18) yields

t∫

t1

[
(t− s)α−1

es
] [
e−sk(s)xη(s)

]
ds

≤




t∫

t1

(t− s)p(α−1)
epsds




1/p


t∫

t1

e−qskq(s)xηq(s)ds




1/q

≤




t∫

0

(t− s)p(α−1)
epsds




1/p


t∫

t1

e−qskq(s)xηq(s)ds




1/q

≤ (Qept)1/p




t∫

t1

e−qskq(s)xηq(s)ds




1/q

= Q1/pet




t∫

t1

e−qskq(s)xηq(s)ds




1/q

.

(2.19)

Using (2.19) in (2.18), we obtain

z(t) :=
(

x(t)
t1/ηet/ηR(t, t1)

)η
≤ 1 + C4 +K




t∫

t1

e−qskq(s)xηq(s)ds




1/q

, (2.20)

where C4 is an upper bound for C3e
−t and K = 2η−1Q1/p/αΓ(α). Employing again

inequality (2.15), we obtain from (2.20) that

zq(t) ≤ 2q−1(1 + C4)q + 2q−1Kq

t∫

t1

e−qskq(s)xηq(s)ds,

which can be written as

zq(t) ≤ 2q−1(1 + C4)q + 2q−1Kq

t∫

t1

kq(s)sqRηq(s, t1)zq(s)ds. (2.21)

Setting P1 = 2q−1(1 + C4)q, Q1 = 2q−1Kq, and w(t) = zq(t) so that z(t) = w1/q(t),
inequality (2.21) becomes

w(t) ≤ P1 +Q1

t∫

t1

kq(s)sqRηq(s, t1)w(s)ds.
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The conclusion then follows from Gronwall’s inequality and condition (2.3), that is,

lim sup
t→∞

x(t)
t1/ηet/ηR(t, t1) <∞.

The proof in case x(t) is an eventually negative solution is similar. This completes
the proof of the theorem.

We next give sufficient conditions under which any nonoscillatory solution x
of equation (1.1) with (1.3) satisfies

|x(t)| = O
(
et/ηR(t, c)

)
as t→∞.

Theorem 2.4. Let conditions (i)–(ii) and (2.2) hold and assume that there exist real
numbers p > 1 and α ∈ (0, 1) such that p(α− 1) + 1 > 0. If

∞∫

c

kq(s)Rηq(s, c)ds <∞, where q = p

p− 1 , (2.22)

and conditions (2.4)–(2.5) hold, then every nonoscillatory solution x(t) of equation
(1.1) with (1.3) satisfies

lim sup
t→∞

|x(t)|
et/ηR(t, c) <∞. (2.23)

Proof. Let x(t) be a nonoscillatory solution of equation (1.1) with (1.3), say x(t) > 0
for t ≥ t1 for some t1 ≥ c. As in the proof of Theorem 2.3, we again let

F (t) = h(t, x(t))− f(t, x(t)).

Then, in view of (i)–(ii), it follows from equation (1.1) that

a(t) (x′(t))η ≤ c0 + 1
Γ(α)

t1∫

c

(t− s)α−1 |F (s)| ds

+ 1
Γ(α)

t∫

c

(t− s)α−1 |e(s)| ds

+ 1
Γ(α)

t∫

t1

(t− s)α−1 [
m(s)xγ(s)− b(s)xλ(s)

]
ds

+ 1
Γ(α)

t1∫

c

(t− s)α−1
k(s) |xη(s)| ds

+ 1
Γ(α)

t∫

t1

(t− s)α−1
k(s)xη(s)ds.

(2.24)
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Proceeding as in the proof of Theorem 2.3, it follows from (2.24) that

a(t) (x′(t))η ≤ C5 + 1
Γ(α)

t∫

t1

(t− s)α−1
k(s)xη(s)ds := ϕ(t), (2.25)

for some constant C5 > 0. Again as in Theorem 2.3, inequality (2.25) can be written
as

x′(t) ≤
(
ϕ(t)
a(t)

)1/η
. (2.26)

The remainder of the proof is similar to that of Theorem 2.3 and so we omit
the details.

We conclude this paper with two examples to illustrate our results.

Example 2.5. Consider the equation

CD
1/2
8
(
t(x′(t))3)′ + f(t, x(t)) = e−2t cos t+ 1

1 + t4
x3(t) + h(t, x(t)), t ≥ 8. (2.27)

Here we have y(t) =
(
t(x′(t))3)′, α = 1/2, c = 8, η = 3, a(t) = t, e(t) = e−2t cos t,

k(t) = 1/(1 + t4), and

R(t, c) = R(t, 8) =
t∫

8

s−1/3ds = 3
2(t2/3 − 4).

Then, it is easy to see that conditions (i) and (2.2) hold. Letting p = 3/2, we see
that q = 3, and p(α − 1) + 1 = 1/4 > 0. Letting f(t, x(t)) = b(t) |x(t)|λ−1

x(t) and
h(t, x(t)) = m(t) |x(t)|γ−1

x(t) with λ > γ, and taking b(t) = m(t) = e−t, we see that
condition (ii) holds. Since

∞∫

c

kq(s)sqRηq(s, c)ds ≤
(

3
2

)9 ∞∫

8

s9

(1 + s4)3 ds <∞,
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condition (2.3) holds. To see that (2.4) holds, note that letting u = t − s + 8,
the integral becomes

t∫

8

(t− s)−1/2|e−2s cos s|ds = −
8∫

t

(u− 8)−1/2e2u−2t−16| cos(t− u+ 8)|du

≤ 1
e2t+16

t∫

8

(u− 8)−1/2e2udu

= 1
e2t+16




16∫

8

(u− 8)−1/2e2udu+
t∫

16

(u− 8)−1/2e2udu




= 1
e2t+16


 lim
b→8+

16∫

b

(u− 8)−1/2e2udu




+ 1
e2t+16




t∫

16

(u− 8)−1/2e2udu




= e32

e2t+16 lim
b→8+

16∫

b

(u− 8)−1/2du+ (16− 8)−1/2

e2t+16

t∫

16

e2udu

= 25/2e32

e2t+16 + 2−5/2

e2t+16
(
e2t − e32) <∞ as t→∞.

Hence, (2.4) and similarly (2.5) hold. Since all conditions of Theorem 2.3 are satisfied,
every nonoscillatory solution x(t) of equation (2.27) satisfies (2.6), that is,

lim sup
t→∞

|x(t)|
3
2e
t/3(t− 4t1/3)

<∞. (2.28)

Example 2.6. Consider the equation

CD
3/5
4

(
t1/2x′(t)

)
+ f(t, x(t)) = e−3t sin t+ 1

t2
x(t) + h(t, x(t)), t ≥ 4. (2.29)

Here we have y(t) = t1/2x′(t), α = 3/5, c = 4, η = 1, a(t) = t1/2, e(t) = e−3t sin t,
k(t) = 1/t2, and

R(t, c) = R(t, 4) =
t∫

4

s−1/2ds = 2t1/2 − 4.

Then, it is easy to see that conditions (i) and (2.2) hold. Letting p = 2, we see
that q = 2, and p(α − 1) + 1 = 1/5 > 0. Letting f(t, x(t)) = b(t) |x(t)|λ−1

x(t) and
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h(t, x(t)) = m(t) |x(t)|γ−1
x(t) with λ > γ and b(t) = m(t) = e−3t, we see that (ii)

holds. Since ∞∫

c

kq(s)Rηq(s, c)ds ≤ 4
∞∫

4

1
s3 ds <∞,

condition (2.22) holds. As in Example 2.5, it is easy to see that conditions (2.4)–(2.5)
hold. Since all conditions of Theorem 2.4 are fulfilled, we have that every nonoscillatory
solution x(t) of equation (2.29) satisfies (2.23), i.e.,

lim sup
t→∞

|x(t)|
2et(t1/2 − 2) <∞. (2.30)

3. REMARKS AND CONCLUSIONS

The results in this paper can also be obtained for higher fractional differential equations
of order α ∈ (n− 1, n) with n ≥ 1. For example, if we take

y(t) =
(
a(t)|x′(t)|ν−1x′(t)

)′

with ν ≥ 1, then our equation would include the equation considered in [8] as a special
case. Another possibility is to replace the fractional derivative CDα

c y(t) by CDr
cy(t)

where r = α+n−1 with α ∈ (0, 1) which would then include the problem considered by
Medveď [20, Eq. (24)]. These would make for interesting problems for future research.

We would also like to point out that if η ≡ 1 in (1.1), then the results in this paper
generalize those in [11] where an additional condition on the function a was needed
(see (2.3) and (2.18) in [11]). Another possible direction for future investigations is to
consider equation (1.1) with η < 1.
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