Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Wave propagation in a thermo piezoelectric membrane immersed in an in finite fluid medium is discussed using three-dimensional linear theory of elasticity and thermos piezoelectricity. Three displacement potential functions are introduced to uncouple the equations of motion, heat and electric conduction equations. The frequency equations are obtained for longitudinal and flexural modes at the solid fluid interfacial boundary conditions. The numerical results are analyzed for PZT-4 material and the computed stress, strain, electric displacement and temperature distribution are presented in the form of dispersion curves and its characteristics are studied.
Czasopismo
Rocznik
Tom
Strony
1145--1156
Opis fizyczny
Bibliogr. 25 poz., wykr.
Twórcy
autor
- Department of Mathematics, Karunya University, Coimbatore, TamilNadu, India
autor
- Department of Mathematics, Karunya University, Coimbatore, TamilNadu, India
autor
- Department of Mathematics, Karunya University, Coimbatore, TamilNadu, India
autor
- Department of Mathematics, Karunya University, Coimbatore, TamilNadu, India
Bibliografia
- [1] Morse, R.W.: Compressional waves along an anisotropic circular cylinder having hexagonal symmetry, J. Acoust. Soc. America, 26, 1018-1021, 1954.
- [2] Bhimraddi, A.A.: A higher order theory for free vibration analysis of circular cylindrical shell, Int. J. Solid and Struct., 20, 623-630, 1984.
- [3] Zhang, X.M.: The parametric analysis of frequency of rotating laminated composite cylindrical shell using wave propagation approach, Comp. methods. Appl. Mech. Eng., 191, 2027-2043, 2002.
- [4] Lord, H.W. and Shulman, Y.: A generalized dynamical theory of thermo-elasticity, J. Mech.Phy. Solids, 5, 299-309, 1967.
- [5] Dhaliwal, R.S. and Sherief, H.H.: Generalized thermo-elasticity for anisotropic media, Quart. J. Appl. Math., 8(1), 1-8, 1990.
- [6] Mindlin, R.D.: Equation of high frequency vibrations of thermo-piezoelectric crystal plates, Interactions in Elastic Solids, Springer, Wien, 1979.
- [7] Nowacki, W.: Some general theorems of thermo-piezoelectricity, J. Therm. Stresses, 1, 71-182,1978.
- [8] Nowacki, W.: Foundations of linear piezoelectricity, in H. Parkus (Ed.), Electromagnetic Interactions in Elastic Solids, Springer, Wien. (Chapter 1), 1979.
- [9] Chandrasekhariah, D.S.: A temperature rate dependent theory of piezoelectricity, J. Therm. Stresses, 7, 293-306, 1984.
- [10] Chandrasekhariah, D.S.: A generalized linear thermoelasticity theory of piezoelectric media, Acta Mech., 71, 39-49, 1988.
- [11] Chandrasekharaiah, D.S.:Thermoelasticity with second sound - a review, Appl. Mech. Reviews, 39, 355-376, 1986.
- [12] Tang, Y.X. and Xu, K.: Dynamic analysis of a piezothermoelastic laminated plate, J. Therm. Stresses, 18, (1995), 87-104.
- [13] Yang, J.S., Batra, R.C.: Free vibrations of a linear thermo-piezoelectric body, J. Therm. Stresses, 18, 247-262, 1995.
- [14] Moghadam, P.Y., Tahani, M. and Naserian-Nik, A.M.: Analytical solution of piezolaminated rectangular plates with arbitrary clamped/simply-supported boundary conditions under thermo-electro-mechanical loadings, Appl. Math. Modelling, 37(5), 3228-3241, 2003.
- [15] Sabzikar Boroujerdy, M., Eslami, M.R.: Axisymmetric snap-through behavior of Piezo-FGM shallow clamped spherical shells under thermo-electro-mechanical loading, Int. J. Press. Vessels Piping, 120, 19-26, 2014.
- [16] Lamb, H.: On the vibrations of an elastic plate in contact with water, Proc. R. Soc. London, Ser. A, 98, 205-206, 1920.
- [17] Lindholm, U.S., Kana, D.D., Chu, W.H. and Abramson, H.N.: Elastic vibration characteristics of cantilever plates in water, J. Ship Res., 9(1), 11-22, 1965.
- [18] Meyerhoff, W.K.: Added masses of thin rectangular plates calculated from potential theory, J. Ship Res., 14, 100-111, 1970.
- [19] Kwak, M.K.: Hydroelastic vibration of rectangular plates, J. Appl. Mech.-Tr. ASME, 63, 110-115, 1996.
- [20] Haddara, M.R. and Cao, S.: A study of the dynamic response of submerged rectangular flat plates, Marine Struct., 9, 913-933, 1996.
- [21] Amabili, M., Frosali, G. and Kawk, K.: Free vibrations of annular plates coupled with fluids, J. Sound Vib., 191(5), 825-846, 1996.
- [22] Selvamani, R. and Ponnusamy, P.: Wave propagation in a generalized thermo elastic plate immersed in fluid, Struct. Eng.Mech., 46(6), 827-842, 2013.
- [23] Selvamani, R. and Ponnusamy, P.: Dynamic response of a solid bar of cardioidal cross-sections immersed in an inviscid fluid, Appl. Math. Information Sci., 8(6), 2909-2919, 2014.
- [24] Selvamani, R.: Dispersion analysis in a fluid filled and immersed transversely isotropic thermo-electro-elastic hollow cylinder, Mech. & Mechanical Eng., 20(3), 209-231, 2016.
- [25] Sharma, J.N., Pal, M. and Chand, D.: Three dimensional vibrational analysis of a piezothermoelastic cylindrical panel, Int.J. Eng. Sci., 42, 1655-1673, 2004.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e5a69b16-ce06-4d15-a92b-bd991ff9d000