PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

El-Nino effect on reservoir capacity reliability: Case study of Sumi dam, Sumbawa Island, Indonesia

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Reservoirs have a very important function in providing multi-sector water requirements. In the future, reservoirs not only serve to store and available water can also be used as disaster mitigation instruments. The completeness of hydrological measurements in reservoirs can be expanded more widely for climate change mitigation. The reliability of the reservoir capacity varies greatly depending on the El-Nino character that occurs among them El-Nino is weak, moderate, strong and very strong. The El-Nino characteristic is very influential on the period of water availability, the increase of evaporation capacity and decrease of reservoir capacity. Analysis of the reliability of the reservoir volume due to El-Nino using the Weibull equation. The deficit reservoir was calculated using the concept of water balance in the reservoir that is the relationship between inflow, outflow, and change of storage at the same time. Based on the results of the analysis showed that the evaporation increase and the decrease of reservoir capacity had a different pattern that is when the evaporation capacity started to increase at the same time the reservoir capacity decreased significantly. The correlation coefficient between evaporation capacity increase and decrease of reservoir water capacity are consecutively –0.828, –0.636, and –0.777 for El- Nino weak, moderate and very strong respectively. At the reservoir capacity reliability of 50% reservoir has a significant deficit. When weak El-Nino the deficit is 2.30∙106 m3, moderate: 6.58∙106 m3, and very strong 8.85∙106 m3.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
1--7
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
  • University of Brawijaya, Faculty of Engineering, Veteran Street, Malang, 65145, East Java, Indonesia
  • University of Mataram, Indonesia
  • University of Brawijaya, Faculty of Engineering, Veteran Street, Malang, 65145, East Java, Indonesia
  • University of Brawijaya, Faculty of Engineering, Veteran Street, Malang, 65145, East Java, Indonesia
autor
  • Muhammadyah University Malang, Faculty of Engineering, Indonesia
Bibliografia
  • ADELOYE A.J., NAWAZ N.R., MONTASERI M. 1999. Climate change water resources planning impacts incorporating reservoir surface net evaporation fluxes: A case study. Water Resources Development. Vol. 15. No. 4 p. 561–581. DOI 10.1080/07900629948763.
  • ADJIM H., DJEDID A. 2018. Drought and mobilization in semi-arid zone: The example of Hammam Boughrara Dam (North-West of Algeria). Journal and Water Land Development. No. 37 p. 3–10. DOI 10.2478/jwld-2018-0019.
  • BHUVANESWARI K., GEETHALAKSHMI V. 2013. The impact of El Niño/Southern Oscillation on hydrology and rice productivity in the Cauvery Basin, India: Application of the soil and water assessment tool. Weather and Climate Extremes. Vol. 2 p. 39–47. DOI 10.1016/j.wace.2013.10.003.
  • BURN D.H., SIMONOVIC S.P. 1996. Sensitivity of reservoir operation performance to climatic change. Water Resources Management. Vol. 10. Iss. 6 p. 463–478.
  • CHIANG J.L., TSAI Y.S. 2012. Reservoir drought prediction using support vector machines [online]. Applied Mechanics and Materials. Vol. 145 p. 455–459. DOI 10.4028/www.scientific.net/AMM.145.455. [Access 08.12.2011]. Available at: www.scientific.net/AMM. 145.455
  • DOORENBOS J., PRUITT W.O. 1977. Crop water requirements. FAO Irrigation and Drainage Paper. No. 24 (rev.). Rome, Italy. FAO pp. 144.
  • FOWLER H.J., KILSBY C.G., O’CONNELL P.E. 2003. Modeling the impact of climatic change and variability on the reliability, resilience and vulnerability of a water resource system. Water Resources Research. Vol. 39. Iss. 8, 1222. DOI 10.1029/2002WR001778.
  • FRANCISCO P.R.M., DE MEDEIROS R.M., TAVARES A.L., SANTOS D. 2016. Variability space-temporal of annual precipitation of wet and dry period in the Paraíba state. Journal of Hyperspectral Remote Sensing. Vol. 6. No. 1 p. 1–9. DOI 10.5935/2237-2202.20160001.
  • Golden Gate Weather Services undated. El-Niño and La Niña years and intensities. Based on Oceanic Niño Index (ONI) [online]. National Oceanic and Atmospheric Administration. [Access: 20.01.2019]. Available at: htpp://ggweather.com/enso/oni.htm
  • IPCC 2007. Climate change. 2007. Synthesis report. In: A Contribution of Working Groups I, II, and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. [Core Writing Team, R.K. Pachauri, A. Reisinger (eds.)]. Geneva, Switzerland. IPCC pp. 104.
  • KEENER V.W., FEYEREISEN G.W., LALL U., JONES J.W., BOSCH D.D., LOWRANCE R. 2010. El-Niño/Southern Oscillation (ENSO) influences on monthly NO3 concentration, stream flow and precipitation in the Little River Watershed, Tifton, Georgia (GA). Journal of Hydrology. Vol. 381. Iss. 3–4 p. 352–363. DOI 10.1016/ j.jhydrol.2009.12.008.
  • LABAT D. 2008. Wavelet analysis of the annual discharge records of the world’s largest rivers. Advances in Water Resources. Vol. 31 p. 109–117. DOI 10.1016/j.advwatres.2007.07.004.
  • LI L., XU H., X, SIMONOVIC S.P. 2010. Streamflow forecast and reservoir operation performance assessment under climate change. Water Resources Management. Vol. 24. Iss. 1 p. 83–104. DOI 10.1007/s11269-009-9438-x.
  • LOPEZ A., FUNG F., NEW M., WATTS G., WESTON A., WILBY R.L. 2009. From climate model ensembles to climate change impacts and adaptation: A case study of water resource management in the southwest of England. Water Resources Research. Vol. 45. Iss. 8, W08419 p. 1–21. DOI 10.1029/2008WR007499.
  • NAWAZ N.R., ADELOYE J. 2006. Monte Carlo assessment of sampling uncertainty of climate change impacts on water resources yield in Yorkshire, England. Climatic Change. Vol. 78. Iss. 2–4 p. 257–292. DOI 10.1007/s10584-005-9043-9.
  • OKAFOR G.C., OGBU K.N. 2018. Assessment of the impact change on the freshwater availability of Kaduna River Basin, Nigeria. Journal of Water and Land Development. No. 38 p. 105–114. DOI 0274/jwld-2018-0047.
  • PENMAN H.L. 1963. Vegetation and hydrology. Technical Communication No. 53, Commonwealth Bureau of Soils, Harpenden, England. ISBN 0851982298 pp. 125.
  • RAJAGOPALAN B., LALL U. 1998. Interannual variability in western US precipitation. Journal of Hydrology. Vol. 210. Iss. 1–4 p. 51–67. DOI 10.1016/S0022-1694(98) 00184-X.
  • RASMUSSON E.M., WALLACE J.M. 1983. Meteorological aspects of El Niño/Southern Oscillation. Science. Vol. 222 p. 1195–1201. DOI 10.1126/science.222.4629.1195.
  • SHIAU J.T. 2003. Water release policy effects on the shortage characteristics for the Shihmen Reservoir system during droughts. Water Resources Management. Vol. 17. Iss. 6 p. 463–480. DOI 10.1023/B:WARM. 0000004958.93250.8a.
  • TETENS O. 1930. Uber einige meteorologische Begriffe. Zeitschrift für geophysik. T. 6 p. 297–309.
  • WONDIMAGEGNEHU D., TADELE K. 2015 Evaluation of climate change impact on Blue Nile Basin Cascade Reservoir operation – case study of proposed reservoirs in the Main Blue Nile River Basin, Ethiopia. Hydrological Sciences and Water Security: Past, Present and Future. Proceedings of the 11th Kovacs Colloquium, Paris, France, June 2014. IAHS Publ. 366. DOI 10.5194/piahs-366-133-2015.
  • YASA I W., BISRI M., SHOLICHIN M., ANDAWAYANTI U. 2018. Hydrological drought index based on reservoir capacity – Case study of Batujai dam in Lombok Island, West Nusa Tenggara, Indonesia. Journal of Water and Land Development. No. 38 p. 155–162. DOI 10.2478/jwld-2018-0052.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e5a639b7-4249-4296-9df2-798dcf7dac63
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.