PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Remarks on the origin of cerussite in the Upper Silesian Zn-Pb deposits, Poland

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Cerussite, the most important oxidized lead mineral in the Upper Silesian Zn-Pb deposits, occurs in two readily distinct types: fine-grained cerussite replacing galena in-situ and macrocrystalline cerussite filling open fractures and cavities. Microscopic observations and thermodynamic considerations lead to the conclusion that galena can be oxidized to lead carbonate directly, not necessarily through an intermediate sulphate phase. Locally present iron sulphides undergoing oxidation acidify solutions and provide ferric ions which are important oxidizing agents. In such microenvironments, anglesite can preferentially form. Cerussite and galena commonly coexist together with non-oxidized zinc sulphides. It is difficult to explain such assemblages if galvanic couplings made of these two sulphides are not considered. These couplings are only formed when these two sulphides are in direct contact. In such an assemblage, galena undergoes oxidation, mostly to cerussite, and sphalerite is passivated. When there is no direct contact between sulphides, the galvanic couplings do not exist. Galena surfaces become covered by oxidation products which inhibit further oxidation. As such a cover does not form on sphalerite, it can be easily oxidized.
Czasopismo
Rocznik
Strony
53--64
Opis fizyczny
Bibliogr. 25 poz., rys., tab., wykr.
Twórcy
autor
  • Institute of Geological Sciences, Polish Academy of Sciences, Senacka 1, 31-002 Krakow, Poland
  • Institute of Geological Sciences, Jagiellonian University, Oleandry 2A, 30-063 Krakow, Poland
  • Institute of Geological Sciences, Jagiellonian University, Oleandry 2A, 30-063 Krakow, Poland
Bibliografia
  • Al-Ruwaih F.M. (2001). Hydrochemical investigation on the clastic and carbonate aquifers of Kuwait. Bulletin of Engineering Geology and the Environment, 60(4), 301–314. DOI: 10.1007/s100640100119.
  • Boni M., Gilg H.A., Aversa G., & Balassone G. (2003). The “Calamine” of Southwest Sardinia: Geology, Mineralogy, and Stable Isotope Geochemistry of Supergene Zn Mineralization. Economic Geology, 98(4), 731–748. DOI:10.2113/98.4.731.
  • Borg G., Kärner K., Buxton M., Armstrong R., & van der Merve S.W. (2003). Geology of the Skorpion Supergene Zinc Deposit, Southern Namibia. Economic Geology, 98(4), 749–771. DOI: 10.2113/98.4.749.
  • Buckley A.N., & Woods R. (1996). Relaxation of the lead-deficient sulfide surface layer on oxidized galena. Journal of Applied Electrochemistry, 26(9), 899–907. DOI: 10.1007/BF00242041.
  • Coppola V., Boni M., Gilg H.A., & Strzelska-Smakowska, B. (2009). Nonsulfide zinc deposits in the Silesia–Cracow district, Southern Poland. Mineralium Deposita, 44(5). DOI: 10.1007/s00126-008-0220-4.
  • Cabała J. (1996). Występowanie cerusytu i stopień utlenienia siarczków ołowiu w rudach Zn-Pb rejonu olkusko-zawierciańskiego (Occurrence of cerussite and oxidation degree of lead sulphides in Olkusz-Zawiercie region). Zeszyty Naukowe. Politechnika Śląska. Górnictwo, 1343(230), 223–242. (in Polish).
  • Cabała J. (2001). Development of oxidation in Zn-Pb deposits in Olkusz area. In A. Piestrzyński et al. (Eds.), Mineral Deposits at the Beginning of the 21st century (pp. 121–124). Lisse: Balkema.
  • Cotton F.A., Wilkinson G., & Gaus P.L. (2002). Podstawy chemii nieorganicznej (Basic Inorganic Chemistry). Warszawa: PWN. (in Polish).
  • da Silva G., Lastra M.R., & Budden J.R. (2003). Electrochemical passivation of sphalerite during bacterial oxidation in the presence of galena. Minerals Engineering, 16(3), 199–203. DOI:10.1016/S0892-6875(03)00010-4.
  • Dold B. (2005). Basic concepts in environmental geochemistry of sulfide mine-waste. In Mineralogía, geoquímica y geomicrobiología para el manejo ambiental de desechos mineros. XXIV Curso Latinoamericano de Metalogenia, 22 August–2 September 2005 (pp. 1–36). Lima, Perú: UNESCO-SEG.
  • Espejo T.R., Escobar B., Jedlicki E., Uribe P. & Badilla-Ohlbaum R. (1988). Oxidation of Ferrous Iron and Elemental Sulfur by Thiobacillus ferrooxidans. Applied and Environmental Microbiology, 54(7), 1694–1699. DOI: 0099-2240/88/071694-06402.00/0
  • Herbert R. (1999). Sulphide oxidation in mine waste deposits – A review with emphasis on dysoxic weathering. Stockholm: MiMi Print. (MiMi Report 1999:1).
  • Hitzman M.W., Reynolds N., Sangster D.F., Aallen C.R. & Carman C. (2003). Classification, Genesis, and Exploration Guides for Non-Sulfide Zinc Deposits. Economic Geology, 98(4), 685–714. DOI: 10.2113/98.4.685
  • Jensen A.B. & Webb C. (1995). Ferrous Sulphate Oxidation Using Thiobacillus ferrooxidans: a Review. Process Biochemistry, 30(3), 225–236. DOI: 10.1016/0032-9592(95)95721-T
  • Karavaiko G.I. (1985). Microbiological processes for the leaching of metals from ores, State-of-the-art review. In A.E. Torma (Ed.), United Nations Environment Programme, USSR commission for UNEP (pp. 62–69). Moscow: Center of International Projects, GKNKT.
  • Kucha H. (2003). Mississippi Valley Type Zn-Pb deposits of Upper Silesia, Poland. In J.G. Kelly et al. (Eds.), Europe’s Major Base Metal Deposits (pp. 253–271). Dublin: Irish Association for Economic Geology.
  • Kuźniar C. (1928). O powstaniu cerusytu w złożach cynku i ołowiu (On the genesis of cerussite in Zn-Pb deposits). Posiedzenia naukowe Państwowego Instytutu Geologicznego, 19/20 (in Polish).
  • Kuźniar C. (1932). Złoża rud ołowiu w okolicy Siewierza (Lead ore deposits of Siewierz surroundings). Sprawozdania Państwowego Instytutu Geologicznego, 7 (in Polish).
  • Reichert J. & Borg G. (2008). Numerical simulation and a geochemical model of supergene carbonate-hosted non-sulphide zinc deposits. Ore Geology Reviews, 33(2), 134–151. DOI:10.1016/j.oregeorev.2007.02.006.
  • Sangameshwar S.R. & Barnes H.L. (1983). Supergene Processes in Zinc-Lead-Silver Sulfide Ores in Carbonates. Economic Geology, 78(7), 1379–1397. DOI: 10.2113/gsecongeo.78.7.1379.
  • Sato M. (1960). Oxidation of Sulfide Ore Bodies; II, Oxidation mechanisms of Sulfide Minerals at 25oC. Economic Geology, 55(6), 1202–1231. DOI: 10.2113/gsecongeo.55.6.1202.
  • Tributsch H. (2001). Direct versus indirect bioleaching. Hydrometallurgy, 59(2–3), 177–185. DOI: 10.1016/S0304-386X(00)00181-X.
  • Won K.J. (1967). Direct acid leaching of zinc from marmatite ores. Journal of the Korean Chemical Society, 11(1), 38–43.
  • Żabiński W. (1964). Z badań geochemicznych strefy utlenienia śląsko-krakowskich złóż kruszców cynku i ołowiu. (From geochemical investigations of oxidation zone of Cracovian-Silesian Zn-Pb ore deposits). In: Z badan mineralizacji utworów triasu w Polsce. (From investigations of mineralization of Triassic beds in Poland). Prace Geologiczne, 19, 49–84. (in Polish, English summary).
  • Żabiński W. (1960). Charakterystyka mineralogiczna strefy utlenienia śląsko-krakowskich złóż kruszców cynku i ołowiu. (Mineralogical characteristics of oxidation zone of Cracovian-Silesian Zn-Pb ore deposits). Prace Geologiczne, 1, 1–99. (in Polish).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e5a3d1ac-8374-4e25-b330-b6537f23669a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.