PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Identyfikatory
Warianty tytułu
PL
Wpływ nanocząstek cyrkonu na parametry morfofizjologiczne i skład mineralny P. ostreatus
Języki publikacji
EN
Abstrakty
EN
Neutron activation analysis of the Pleurotus ostreatus showed that adding of solid solution of ZrO2-Y2O3 hydroxide and oxide (3 mol % Y2O3) nanoparticles of size 4 and 9 nm at a concentration of 0.2 weight percent in a nutrient medium (Czapek) alters the character of physiological processes in the biological tissues of the mushrooms. This is manifested in the form of a significant change in morphological and physiological characteristics of the mushrooms and the elemental composition of the dry biomass. In particular, it is shown that the intercalation of nanoparticles into the tissues of the mushrooms leads to an increase of 1.3-1.4 times (more than 2.6 g/dm3) of biomass accumulation (industrial strain HK 35) and decrease of 1.7-1.8 times (below 1.7-2.5 mg/mm3) of concentrations of extracellular proteins into the culture fluid at a substantially constant value of the acidity. It is shown that the addition of ZrO2+3 mol % Y2O3 nanoparticles of sizes 4 or 9 nm into tissue of mushroom at step of the mother mycelium in very small concentrations can alter effectively the chemical composition of the substances produced by the cells and consequently, its physiological activity. It is shown that the use of low concentrations of ZrO2 nanoparticles allow to increase the yield and resistance of crops to diseases up to 1.2-1.5 times, as well as in the long term can be used in biomedical technologies for the treatment of cancer diseases.
PL
Zastosowanie neutronowej analizy aktywacyjnej w badaniach Pleurotus ostreatus pokazało, że dodawanie stałego roztworu wodorotlenku i tlenku ZrO2-Y2O3 (3 mol % Y2O3) w postaci nanocząstek o rozmiarze 4 i 9 nm w stężeniu 0,2% wagowych w pożywce (Czapek) zmienia charakter procesów fizjologicznych w tkankach biologicznych grzybów. Zjawisko to przejawia się w postaci znacznych zmian morfologicznych i fizjologicznych cech grzybów oraz składu pierwiastkowego suchej biomasy. W szczególności wykazano, że wprowadzenie nanocząstek do tkanek grzybów prowadzi do wzrostu 1,3-1,4 razy (więcej niż 2,6 g/dm3) akumulacji biomasy (szczep przemysłowy HK 35) i spadku o 1,7-1,8 razy (poniżej 1,7-2,5 mg/mm3) stężenia pozakomórkowych białek w płynie hodowli przy zasadniczo stałej wartości kwasowości. Pokazano, że dodanie ZrO2 + 3% mol nanocząstek Y2O3 rozmiarów 4 lub 9 nm do tkanki grzyba na etapie grzybni macierzystej, w bardzo małych stężeniach, może skutecznie zmieniać skład chemiczny substancji wytwarzanych przez komórki, a co za tym idzie, jej aktywność fizjologiczną. Wykazano, że stosowanie niskich stężeń nanocząstek ZrO2 zwiększa wydajności i podnosi odporności roślin na choroby do 1,2-1,5 raza, a także w przyszłości może być stosowane w technologii biomedycznej, w leczeniu chorób nowotworowych.
Rocznik
Strony
169--188
Opis fizyczny
Bibliogr. 41 poz., rys., tab., wykr.
Twórcy
  • Faculty of Biology, Donetsk National University, str. Schorsa 46, Donetsk, 83050, Ukraine
  • Joint Institute for Nuclear Research, str. Joliot-Curie 6, 141980, Dubna, Russian Federation
  • Donetsk National University, Department of Biochemistry, str. Schorsa 17a, Donetsk, 83000, Ukraine
autor
  • Universidade Nova de Lisboa, 2829-516 Caparica Ext.: 12201/3/4/5, Portugal
autor
  • Donetsk Physical-Technical Institute, OO Galkin NAS, str. R. Luxemburg 72, Donetsk, 83114, Ukraine
  • Joint Institute for Nuclear Research, str. Joliot-Curie 6, 141980, Dubna, Russian Federation
autor
  • Joint Institute for Nuclear Research, str. Joliot-Curie 6, 141980, Dubna, Russian Federation
autor
  • Institute of Food Biotechnology and Genomics NAS, str. Osipovskii 2a, Kiev, 04123, Ukraine
  • Donetsk Physical-Technical Institute, OO Galkin NAS, str. R. Luxemburg 72, Donetsk, 83114, Ukraine
  • Donetsk Physical-Technical Institute, OO Galkin NAS, str. R. Luxemburg 72, Donetsk, 83114, Ukraine
  • Universidade Nova de Lisboa, 2829-516 Caparica Ext.: 12201/3/4/5, Portugal
  • Joint Institute for Nuclear Research, str. Joliot-Curie 6, 141980, Dubna, Russian Federation
  • Donetsk Physical-Technical Institute, OO Galkin NAS, str. R. Luxemburg 72, Donetsk, 83114, Ukraine
Bibliografia
  • [1] Sergeev GB. Nanochemistry. Moscow: Publishing House of Moscow State University; 2003. http://booksplanet.info/knigi-po-tochnym-i-estestvennym-naukam/knigi-po-himii/826-sergeev-g-bnanohimija.html.
  • [2] Uaitsaids D, Eigler D, Anders R. Nanotechnology in the coming decades. Forecast research directions. In: Roco MK, Williams RS, Alivisatos P, editors. Nanotechnology Research Directions: IWGN Workshop Report: Vision for Nanotechnology in the Next Decade, Dordrecht: Kluwer Acad Publ; 2000.
  • [3] Galindo TPS, Pereira R, Freitas AC, Santos-Rocha TA, Rasteiro MG, Antunes F, at al. Toxicity of organic and inorganic nanoparticles to four species of white-rot fungi. Sci Total Environ. 2013;458-460:290-297. DOI: 10.1016/j.scitotenv.2013.04.019.Epub2013May8. http://www.sciencedirect.com/science/article/pii/S0048969713004403.
  • [4] Doroshkevich NV, Frontasyeva MV, Doroshkevich VS, Shylo AV, Ostrovnaya TM, Pavlov SS, et al. Interaction of P. ostreatus (Jacq.: Fr.) Kummer mushroom with zirconium oxide nanoparticles. Annual report FLNP JINR. 2014;103-107. http://flnp.jinr.ru/img/304/1257_Nuclear_Physics_reports.pdf.
  • [5] Zholobak NM, Ivanov VK, Shcherbakov AB, Shaporev AS, Polezhaeva OS, Baranchikov AYe, et al. UV-shielding property, photocatalytic activity and photocytotoxicity of ceria colloid solutions. J Photochem Photobiol B: Biol. 2011;102(1):32-38. DOI: 10.1016/j.jphotobiol.2010.09.002.
  • [6] Spivak NYa, Shepel EA, Zholobak NM, Shcherbakov AB, Antonovitch GV, Yanchiy RI, et al. Ceria nanoparticles boost activity of aged murine oocytes. Nano Biomedic Eng. 2012;4:4:188-194. DOI: 10.5101/nbe.v4i4.p188-194.
  • [7] Bhat R, Sharanabasava VG, Deshpande R, Ullas Shetti, Sanjeev G, Venkataraman A. Photo-bio-synthesis of irregular shaped functionalized gold nanoparticles using edible mushroom Pleurotus florida and its anticancer evaluation. J Photochem Photobiol B: Biol. 2013;125:63-69. DOI: 10.1016/j.jphotobiol.2013.05.002.
  • [8] Roy N, Gaur A, Jain A, Bhattacharya S, Rani V. Green synthesis of silver nanoparticles: An approach to overcome toxicity. Environ Toxicol Pharmacol. 2013;36(3):807-812. DOI: 10.1016/j.etap.2013.07.005. ttp://www.sciencedirect.com/science/article/pii/S138266891300152X.
  • [9] Sarkar QJ, Roy SK, Laskar A, Chattopadhyay D, Acharya K. Bioreduction of chloroaurate ions to gold nanoparticles by culture filtrate of Pleurotus sapidus. Materials Lett. 2013;92:313-318. DOI: 10.1016/j.matlet.2012.10.130.
  • [10] Baldrian P, Gabriel J. Nerud F, Zadrazil F. Effect of heavy metals on the growth of selected wood-rotting Basidiomycetes. Folia Microbiol. 1997;42(5):521-523. DOI: 10.1007/BF02826566.
  • [11] Gorbunov AV, Lyapunov SM, Mochalova E, Frontasyeva MV, Pavlov SS. Assessment of factors influencing trace element content of the Basidiomycetes in the European part of Russia. Adv Microbiol. 2013;3:37-46. DOI: 10.4236/aim.2013.38A007. http://dx.doi.org/10.4236/aim.2013.38A007.
  • [12] Lamrood PY, Ralegankar SD. Biosorption of Cu, Zn, Fe, Cd, Pb and Ni by non-treated biomass of some edible mushrooms. Asian J Exp Biol Sci. 2013;4(2):190-195. http://www.ajebs.com/vol4(2)/5.pdf.
  • [13] Silva SO, Gomes da Costa SM, Clemente E. Chemical composition of Pleurotus pulmonarius (Fr.) Quél., substrates and residue after cultivation. Braz Arch Biol Technol. 2002;45(4):531-535. http://dx.doi.org/10.1590/S1516-89132002000600018.
  • [14] Krasnopolskaya LM, Belitsky I, Feodorova G. Screening of strains of the genus Pleurotus (Fr.) Kumm. with a broad spectrum of antimicrobial activity. Int J Med Mushrooms. 2001;3:172. http://www.dl.begellhouse.com/download/article/5cb6075c2e20cd80/IJM%200302-3%20(172).pdf.
  • [15] Lindequist U, Niedermeyer THJ., Jülich WD. The pharmacological potential of mushrooms. Evid Based Complement Alternat Med. 2005;2-3:285-299. DOI: 10.1093/ecam/neh107.
  • [16] Kocaoba S, Arısoy M. The use of white-rot fungi (Pleurotus ostreatus) immobilized on amberlite XAD-4 as a new biosorbent in trace metal determination. Biores Technol. 2011;102:8035-8039. DOI: 10.1016/j.biortech.2011.05.004 (http://europepmc.org/abstract/MED/21737258).
  • [17] Lan Ma, Yuhong Peng, Bo Wu, Daiyin Lei, Heng Xu. Pleurotus ostreatus nanoparticles as a new nano-biosorbent for removal of Mn(II) from aqueous solution. Chem Eng J. 2013;225:59-67. DOI 10.1016/j.cej.2013.03.044.
  • [18] Pazur A, Rassadina V, Dandler J, Zoller J. Growth of etiolated barley plants in weak static and 50 Hz electromagnetic fields tuned to calcium ion cyclotron resonance. Biomagn Res Techn. 2006;4:1. DOI:10.1186/1477-044X-4-1 http://www.biomagres.com/content/4/1/1.
  • [19] Bilay VI. Methods of Experimental Mycology. Kiev: Naukova Dumka Press; 1982. http://booksshare.net/index.php?id1=4&category=biol&author=bilay-vi&book=1982&.
  • [20] Semenov SM. Laboratory Media for Actinomycetes and Fungi. Moscow: Agropromizdat; 1990. http://www.thetoptube.com/the-big-forum/topic-t327726.html.
  • [21] Kochetov GA. A Practical Guide to Enzymology. Moscow: Higher School; 1980.
  • [22] Frontasyeva MV, Kirkesali EI. Epithermal neutron activation analysis in applied microbiology. J Rad Nucl Chem. (Specil issue of MTAA-13 Proceedings, March 13-18, 2011, College Station, Texas, USA.) 2010;286(2):519-524. http://www.springerlink.com/content/p730m22h7h2605x3.
  • [23] Frontasyeva MV, Pavlov SS, Shvetsov VN. NAA for applied investigations at FLNP JINR: present and future. J Rad Nucl Chem. 2010;286:519-524. DOI 10.1007/s10967-010-0814-z.
  • [24] Frontasyeva MV. NAA for life sciences at Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research in Dubna. Ecol Chem Eng S. 2011;18(3):281-304. http://tchie.uni.opole.pl/freeECE/S_18_3/Frontasyeva_18(S3).pdf.
  • [25] Cole MA, Voelcker NH, Thissen H, Griesser HJ. Stimuli-responsive interfaces and systems for the control of protein-surface and cell-surface interactions. Biomaterials. 2009;30:1827-1850. http://www.researchgate.net/profile/Nicolas_Voelcker/publication/23788505_Stimuli-responsive_pdf.
  • [26] Parshina AV, Bobreshova OV, Titov TS. Influence of zirconium oxide(IV) on the sensitivity PD-sensors based on perfluorinated membranes to anions of glycine, alanine and leucine in alkaline solutions. Sorpt Chromatogr Process. 2014;14(3):428-433. http://www.chem.vsu.ru/sorbcr/images/pdf/2014/3/2014_03_09.pdf.
  • [27] Becker HE. Physiology and Biochemistry of Fungi. Moscow: University Press; 1988. http://www.biocat.ru/ebook.php?file=bekker_grib.djvu&page=1.
  • [28] Gorbunov AV, Lyapunov SM, Okina OI, Frontasyeva MV, Pavlov SS. Nuclear and related analytical techniques in ecology: impact of geoecological on the balance of trace elements in the human organism. Phys Particl Nucl. 2012;43(6):783-824. http://dx.doi.org/10.1134/S1063779612060044.
  • [29] Gorbunov AV, Lyapunov SM, Okina OI, Frontasyeva MV, Gundorina SF. Estimation of income micronutrients the human body with food in the central regions of Russia. [Preprint Moscow. Dubna: Joint Institute for Nuclear Research. D14-2004-89; 2009. http://www1.jinr.ru/Preprints/2004/089(D14-2004-89)_e.pdf.
  • [30] Bilai VI. Foundations of General Mycology. Kiev: Higher School; 1980.
  • [31] Alfarra RS, Ali NE, Yusoff MM. Removal of heavy metals by natural adsorbent: review. Int J Biosci. 2014;4(7):130-139. http://dx.doi.org/10.12692/ijb/4.7.130-139.
  • [32] Struchkova IV, Brilkina AA, Veselov AP. Regulation of Protein Synthesis. Educational Handbook. Nizhny Novgorod: Nizhny Novgorod State University; 2010. http://www.unn.ru/books/met_files/reg_bios_belka.pdf.
  • [33] Swodoba L, Zimmermanova K, Kalac P. Concentrations of mercury, cadmium, lead and copper in fruiting bodies of edible mushrooms in an emission area of copper smelter and a mercury smelter. Sci Total Environ. 2000;246:61-67. http://kch.zf.jcu.cz/vyzkum/publikace/separaty/2000-0067.pdf.
  • [34] Implants for surgery - Biocompatibility - Selection of biological test methods for materials and devices ISO/TR 9966: 1989 (E).
  • [35] Buyanov RA, Kryvoruchko OP. Development of the theory of crystallization of sparingly soluble metal hydroxides and scientific foundations of catalyst preparation of compounds of this class. Kinet Catal. 1976;17(3):765-775. http://www.twirpx.com/file/1099318.
  • [36] Elinson SV, Petrov KI. Analytical chemistry of zirconium and hafnium. Jerusalem: Israel Program for Scientific Translations; 1965. http://pi.lib.uchicago.edu/1001/cat/bib/816149.
  • [37] Lisichkin GV. Chemical modification of the surface of the mineral. Soros Educ J. 1996;4:52-59. http://www.pereplet.ru/nauka/Soros/pdf/9604_052.pdf.
  • [38] Akopyan ME. Molecular photoprocesses at the gas-solid. Soros Educ J. 1998;2:115-120. www.pereplet.ru/nauka/Soros/pdf/9802_115.pdf.
  • [39] Strekalovsky VN, Polezhaev YM, Palguev SF. Oxides with Impurity Disordering. Moscow: Nauka; 1987.
  • [40] Patrilyak LK. Catalytic cracking: practice and theory, the development of research in Ukraine. Catalysis Chemicals. 2001;9-10:14-25. dspace.nbuv.gov.ua/handle/123456789/4047.
  • [41] Alexeenko VI, Volkova GK.. The adsorption mechanism of phase transformation of stabilized zirconium. J Techn Phys. 1999;70(9)57-62. http://www.e-biblioteka.lt/resursai/Uzsienio%20leidiniai/ioffe/ztf/2000/09/ztf_t70v09_10.pdf.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e5a2d396-a613-488f-895e-0927f91a3e40
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.