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Abstract 

The algorithm for finding a finite number of the first values of natural frequencies and forms of geometrically 
nonlinear free transverse vibrations of thin-walled elongated panels with arbitrary generatrix is proposed and 
verified. Under normal coordinate quadratic the approximation of displacements is used. Along the tangential 
coordinates used one-dimensional finite elements. The discrete variation problem is built. For its solving 
the perturbation method is applied. The numerical results are compared with previously obtained by other 
authors. 
 
Keywords: elongated panels, vibrations, nonlinearity, perturbations method 

1. Introduction   

Thin elongated panels with various curves as generatrix medial surfaces are widely used 
in the construction and hardware for various purpose. In the operating conditions they 
are subjected to intense dynamic loading, in particular, cyclic. These loads are causing in 
panels the normal displacement commensurate with their thickness. The last are causing 
to their geometrically nonlinear dynamic stress-strain state. 

To avoid resonance phenomena for the actions of cyclic loading is necessary at 
the design stage to determine the spectrum of frequencies of said structural elements. 
Issues of geometrically nonlinear vibrations of plate and shell elements of the construc-
tions on the basis classical and shear theories thoroughly examined in [11] for the defini-
tion of the fundamental frequency. Significant progress in this field together with exper-
imental approaches is done in [1, 2] and some analytical results are given in [8]. Howev-
er, for nonlinear oscillations in many cases it is necessary to define a number of first 
frequencies and forms to detect the phenomena of internal, subharmonic and combina-
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tion resonances [4]. A numerical method for determining the first several frequencies 
and forms at geometrically nonlinear vibrations of shells is proposed in the work [5]. 

In this paper is developed and verified algorithm for determining a finite number of 
natural frequencies and forms elongated thin panels for geometrically nonlinear vibra-
tions. For the primary relations is taken spatial equation geometrically nonlinear dynam-
ic theory of elasticity. Used quadratic approximation of displacements by the normal 
coordinate and finite-element by tangential. The discrete variation problem is built. For 
its solving the method of perturbations is applied.  

2. Problem statement 

Curved anisotropic elastic layer with thickness h we take to natural mixed system of 
coordinate α1, α2, α3 on the median surface. This surface is formed by the motion of 
the line α1 = 0; α3 = 0 on the segment of arbitrary generatrix. We consider that layer is 
significantly larger along the axis α2 to the length of the section arc α2 = 0 of the middle 
surface α3 = 0. So we have an elongated panel. If the conditions of fixing the ends of 
the panel α1 = ±α1

0 and the initial conditions are independent of the coordinate α2, then 
through little influence of conditions fixing the edges α2 = ±α2

0, the functions, that de-
termine the characteristics of geometrically nonlinear vibration processes in the plane of 
the middle section, are dependent from α1, α3. To find these functions are [9]: 

• motion equations 
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• relation between the components ijS of the nonsymmetrical Kirchhoff stress ten-

sor Ŝ  and the components ikσ  of the symmetric Piola stress tensor Σ̂  
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In equations (1) and (2) A
~

– tensor of elastic properties of anisotropic layer, and ρ – 

its density. 
Boundary conditions on the front surface of the panel α3 = ±h/2 for the free vibra-

tions has the form  
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At the elongated ends of the panel α1 = ±α1
0under the conditions of the fixing 

the hinge on the lower surface of the front α2 = −h/2 boundary conditions  has the form 
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The motion equations (1) together with relations (2)–(4) and boundary conditions 
(5)–(7) are describe geometrically nonlinear transverse vibrations of the middle section 
of the panel, if the initial conditions specify as follows: 
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3. Discretezed problem  

Considered above differential formulation of the problem of geometrically nonlinear free 
vibrations is equivalent to the problem of minimizing the functional L [10]: 
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 (10)  

Boundary conditions (5) and (6) for the variation formulation of the problem is a nat-
ural [10], and condition (7) must take into account during its solution. 

Assuming that the considering panel is thin-walled, approximate the unknown dis-
placement at transverse coordinate [7]: 
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For finding unknown coefficients uik(α1) in (11) we use approximation by the tangen-
tial coordinate α1 on one-dimensional izoparametrical linear finite elements [10]: 
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After substituting (11) into (4) and the result together with (11) into (10) we obtain: 

 min}{}{}){(}{}{}{ →++=∆ uMuuuKuuKuL T
NL

T
L

T
&& , (13) 

where {u} = {u}(t) – vector of values of the coefficients )(e
ikmu  at points in the finite-

element partition of the section [−α1
0, α1

0]; KL – linear, and KNL – nonlinear components 
of stiffness matrix; M – matrix of mass [10]. 

Non-linear component of stiffness matrix KNL presented in the form 

 ))}(({)(}{))}(({))}(({ tuBtutuBtuK TT
NL ⋅⋅= . (14) 

Matrix B({u}(t)) we obtain by integrating in (10) members, who are the product of 
partial derivatives, the displacement ui [10]. 

Minimum of discrete functional (13) is achieved at the point {u}(t), where the equa-
tion is satisfied  

 0))}(({)}()){}(({))}(({ =++ tuMtutuKtuK NLL && . (15) 

4. The method of perturbations 

The system of nonlinear equations (15) is written as  

 0))}(({)}()){}(({))}(({ =++ tuMtutuKtuK NLL &&µ , (16) 

where µ (0 ≤ µ ≤ 1) – the parameter perturbation. At µ = 0 have a system of linear alge-
braic equations for the vector{u}, while µ = 1 the nonlinearity is taken into account ful-
ly. The method of perturbations the desired vector of functions {u}(t) and matrix KL 
presented in the form  

                 ...)(}{)(}{)}({ 10 ++= tututu µ  , 

 ...1 −−= LL KKK µ  . (17)  

The result of substituting (17) into (16) and grouping expressions under the same 
powers of µ are the equations  

 0)(}{)(}{ 00 =+ tuKtuM && , (18) 

 0)(})){(}({))(}({)(}{)(}{ 000111 =+−+ tutuKtuKtuKtuM NLL&& . (19) 

Solution of equation (18) is written as  
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 tutu ωcos~)(}{ 0 = , (20) 

and the solution of (19) can be written as follows. Consider equation (17), which seeks a 
solution in the form 
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*
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where )(}{ *
1 tu  і )(}{ 1 tu ×  – solutions of homogeneous and inhomogeneous equations (19). 

According to [6] matrix 1LK  can be represented as  
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L BuuBK }~}{~{

4

3
1 = . (22) 

After substituting (20) and (22) into (19) and taking into account formula [3] 
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for finding )(}{ 1 tu ×  we obtain the equation  
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solution of which we take as 

 tctu ω3cos~)(}~{ 1 =× . (25) 

After substituting (25) into equation (24) we arrive at a relations for determination of 
parameter c~ : 
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If the initial moment the panel is deformed on a certain law, which describes the first 
formula in (8) and is stationary, then the initial conditions for the functions {u}0(t) and 
{u}1(t)  can be represented as 

 Au =)0(}{ 0 ,   0)0(}{ 0 =u& , (27) 

 0)0(}{ 1 =u ,   0)0(}{ 1 =u& . (28) 

In view of (21), we write:  

 tctcAtu ωω 3cos~cos)~()}({ +−= . (29) 

This allows you to build an algorithm for partial finding a finite number of the first 
natural frequencies and amplitudes geometrically nonlinear vibrations of the panel: 

1. Set 1=r  and 0)0( =a . 
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2. Compute TT
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3. Find the eigenvalues )(rω  and eigenvectors )(ra  from the system  
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4. If the conditions are satisfied 1)()1()( / ε≤− − rrr aaa ,   
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where 1ε  and 2ε  – specified accuracy, then go to step 5, otherwise 1: += rr , and 

go to step 2. 
5. As the solution we accept )(: raa = , )(: rωω =  and find a vector c~  having solved 

the a system of algebraic equations  
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5. Analysis of results and conclusions 

To verify the proposed algorithm practicing it for problem, where are known analytical 
and numerical solutions [6]. We consider an isotropic plate-strip elongated edges which 
are fixed by with stationary hinges on the lower front of the plane (see Fig. 1), with 
characteristics: geometric l = 1 m; h = 0.1 m and mechanical E = 40000 N/m2; ν = 0.3. 
 

 
Figure 1. The plate-strip with stationary hinges on the elongated edges 

In Figure 2 shows graphs of free vibrations of the point that has coordinates )0;2/(l  

for linear ( ), analytical ( ) and obtained using the proposed algorithm ( ).Sufficiently 
good correlation with the analytical solution is marked. 

In Figure 3 shows the first four own forms (modes) for geometrically nonlinear vi-
brations the considered plate-strip. 

In Figure 4 shows the skeletal curves [11], constructed using the proposed method 
(dashed line) and the results presented in the work [5] (solid line). The maximum rela-
tive error does not exceed 9%, indicating a sufficiently good approximation property of 
the proposed method. Subsequently, it is advisable to perform a similar study for a wider 
class of thin-walled elements of constructions and anisotropy of mechanical properties.  
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Figure 2. Free vibrations of point )0;2/(l  

 

 

Figure 3. View panels in different modes: a) – the first mode; 
b) – second; c) – third; d) – the fourth 

 

 

Figure 4. Comparison of amplitude-frequency characteristics obtained from the use of 
perturbation method and the results of the work [5] 
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