Tytuł artykułu
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this article, we aim to define ℐ2(S)-summability and ℐ2(Sθ p,r)-summability, and obtain interesting relationships among these by imposing certain conditions on p and r. Finally, we show that the space ℐ2(Sθ p,r (G, B, Y)) ∩ l2 ∞(V) is a closed subspace of l2∞(V).
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
51--62
Opis fizyczny
Bibliogr. 43 poz.
Twórcy
autor
- Department Of Mathematics, Chandigarh University, Mohali-140413, Punjab, India
autor
- Department Of Mathematics, Chandigarh University, Mohali-140413, Punjab, India
autor
- Department Of Mathematics, Chandigarh University, Mohali-140413, Punjab, India
Bibliografia
- [1] K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20 (1986), no. 1, 87-96.
- [2] F. Başar, Summability Theory and its Applications, 2nd ed., CRC Press/Taylor & Francis Group, Boca Raton, 2022.
- [3] F. Başar and M. Yeşilkayagil Savaşcı, Double Sequence Spaces and Four Dimensional Matrices, Monogr. Research Notes in Math., CRC Press/Taylor & Francis Group, Boca Raton, 2022.
- [4] C. Belen and M. Yildirim, On generalized statistical convergence of double sequences via ideals, Ann. Univ. Ferrara Sez. VII Sci. Mat. 58 (2012), no. 1, 11-20.
- [5] J. S. Connor, The statistical and strong p-Cesàro convergence of sequences, Analysis 8 (1988), no. 1-2, 47-63.
- [6] S. Debnath and D. Rakshit, On I-statistical convergence, Iran. J. Math. Sci. Inform. 13 (2018), no. 2, 101-109.
- [7] H. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951), 241-244.
- [8] J. A. Fridy, On statistical convergence, Analysis 5 (1985), no. 4, 301-313.
- [9] J. A. Fridy and C. Orhan, Lacunary statistical summability, J. Math. Anal. Appl. 173 (1993), no. 2, 497-504.
- [10] N. Harnpornchai and W. Wonggattaleekam, An application of neutrosophic set to relative importance assignment in AHP, Mathematics 9 (2021), no. 20, Article ID 2636.
- [11] B. Hazarika, A. Alotaibi and S. A. Mohiuddine, Statistical convergence in measure for double sequences of fuzzy-valued functions, Soft Comput. 24 (2020), 6613-6622.
- [12] B. Hazarika, S. A. Mohiuddine and M. Mursaleen, Some inclusion results for lacunary statistical convergence in locally solid Riesz spaces, Iran. J. Sci. Technol. Trans. A Sci. 38 (2014), no. 1, 61-68.
- [13] V. A. Khan, M. D. Khan and M. Ahmad, Some new type of lacunary statistically convergent sequences in neutrosophic normed space, Neutrosophic Sets Syst. 42 (2021), Paper No. 15.
- [14] M. Kirişçi and N. Şimşek, Neutrosophic normed spaces and statistical convergence, J. Anal. 28 (2020), no. 4, 1059-1073.
- [15] P. Kostyrko, T. Šalát and W. Wilczyński, I-convergence, Real Anal. Exchange 26 (2000/01), no. 2, 669-685.
- [16] D. Koundal, S. Gupta and S. Singh, Applications of neutrosophic sets in medical image denoising and segmentation, Infinite Study, 2016.
- [17] S. Kumar, V. Kumar and S. S. Bhatia, On ideal version of lacunary statistical convergence of double sequences, Gen. Math. Notes 17 (2013), no. 1, 32-44.
- [18] V. Kumar, On I and I∗-convergence of double sequences, Math. Commun. 12 (2007), no. 2, 171-181.
- [19] V. Kumar and M. Mursaleen, On (λ, μ)-statistical convergence of double sequences on intuitionistic fuzzy normed spaces, Filomat 25 (2011), no. 2, 109-120.
- [20] I. J. Maddox, Statistical convergence in a locally convex space, Math. Proc. Cambridge Philos. Soc. 104 (1988), no. 1, 141-145.
- [21] P. Majumdar, Neutrosophic Sets and its Applications to Decision Making, in: Computational Intelligence for Big Data Analysis, Springer, Cham (2015), 97-115.
- [22] K. Menger, Statistical metrics, Proc. Natl. Acad. Sci. USA 28 (1942), 535-537.
- [23] S. A. Mohiuddine, B. Hazarika and A. Alotaibi, On statistical convergence of double sequences of fuzzy valued functions, J. Intell. Fuzzy Syst. 32 (2017), 4331-4342.
- [24] F. Móricz, Tauberian theorems for Cesàro summable double sequences, Studia Math. 110 (1994), no. 1, 83-96.
- [25] M. Mursaleen and O. H. H. Edely, Statistical convergence of double sequences, J. Math. Anal. Appl. 288 (2003), no. 1, 223-231.
- [26] M. Mursaleen and S. A. Mohiuddine, On lacunary statistical convergence with respect to the intuitionistic fuzzy normed space, J. Comput. Appl. Math. 233 (2009), no. 2, 142-149.
- [27] J. H. Park, Intuitionistic fuzzy metric spaces, Chaos Solitons Fractals 22 (2004), 1039-1046.
- [28] U. Praveena and M. Jeyaraman, On generalized Cesaro summability method in neutrosophic normed spaces using two-sided Taubarian conditions, J. Algebraic Stat. 13 (2022), no. 3, 1313-1323.
- [29] R. Saadati and J. H. Park, On the intuitionistic fuzzy topological spaces, Chaos Solitons Fractals 27 (2006), 331-344.
- [30] T. Šalát, On statistically convergent sequences of real numbers, Math. Slovaca 30 (1980), no. 2, 139-150.
- [31] E. Savaş and P. Das, A generalized statistical convergence via ideals, Appl. Math. Lett. 24 (2011), no. 6, 826-830.
- [32] E. Savaş and R. F. Patterson, On some double almost lacunary sequence spaces defined by Orlicz functions, Filomat 19 (2005), 35-44.
- [33] I. J. Schoenberg, The integrability of certain functions and related summability methods, Amer. Math. Monthly 66 (1959), 361-375.
- [34] A. Sharma and V. Kumar, Some remarks on generalized summability using difference operators on neutrosophic normed spaces, J. Ramanujan Soc. Math. Math. Sci. 9 (2022), no. 2, 153-164.
- [35] A. Sharma, V. Kumar and I. R. Ganaie, Some remarks on I(Sθ)-summability via neutrosophic norm, Filomat 37 (2023), no. 20, 6699-6707.
- [36] A. Sharma, S. Murtaza and V. Kumar, Some remarks on Δm(Iλ)-summability on neutrosophic normed spaces, Int. J. Neutrosophic Sci. 19 (2022), 68-81.
- [37] F. Smarandache, Neutrosophic set—a generalization of the intuitionistic fuzzy set, Int. J. Pure Appl. Math. 24 (2005), no. 3, 287-297.
- [38] M. Yeşilkayagil and F. Başar, Some topological properties of the spaces of almost null and almost convergent double sequences, Turkish J. Math. 40 (2016), no. 3, 624-630.
- [39] M. Yeşilkayagil and F. Başar, A note on Abel summability of double series, Numer. Funct. Anal. Optim. 38 (2017), no. 8, 1069-1076.
- [40] M. Yeşilkayagil and F. Başar, Domain of Riesz mean in some spaces of double sequences, Indag. Math. (N.S.) 29 (2018), no. 3, 1009-1029.
- [41] M. Yeşilkayagil and F. Başar, On the paranormed space of bounded variation double sequences, Bull. Malays. Math. Sci. Soc. 43 (2020), 2701-2712.
- [42] M. Yeşilkayagil and F. Başar, AK(ϑ)-property of the spaces of double series, Bull. Malays. Math. Sci. Soc. 44 (2021), 881-889.
- [43] L. A. Zadeh, Fuzzy sets, Information Control 8 (1965), 338-353.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e59faf25-300a-42c9-996f-f73f68ad9c3c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.