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Abstract

We deal with the functional equation (so called addition formula) of the form

f(x+ y) = F (f(x), f(y)),

where F is an associative rational function. The class of associative rational functions was described

by A. Chéritat [1] and his work was followed by a paper of the author. For function F defined by

F (x, y) = ϕ−1(ϕ(x) + ϕ(y)),

where ϕ is a homographic function, the addition formula is fulfilled by homographic type functions.

We consider the class of the associative rational functions defined by formula

F (u, v) =
uv

αuv + u+ v
,

where α is a fixed real number.

1. Introduction

For the rational two-place real-valued function F given by

F (x, y) = ϕ−1(ϕ(x) + ϕ(y)), (H)

where ϕ is a homographic function, the addition formula has the form

ϕ(f(x+ y)) = ϕ(f(x)) + ϕ(f(y))

and it is a conditional functional equation if the domain of ϕ is not equal to R
2.

Solutions of the above conditional equation are homographic type functions.
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If F is associative and rational then the form (H) states that it belongs to one

of the following classes (all of them are considered in their natural domains):

F (u, v) =
uv

αuv + u+ v

F (u, v) =
u+ v + 2λuv

1− λ2uv

F (u, v) =
uv − λ2

u+ v + 2λ

F (u, v) =
(1− 2λ)uv − λ

µ
(u+ v)− 1

µ2

λµuv + u+ v + 2−λ
µ

where α ∈ R, λ, µ ∈ R \ {0} (it is a consequence of the associativity).

Let α ∈ R be arbitrary fixed. We consider the rational function

F : {(x, y) ∈ R
2 : αxy + x+ y 6= 0} −→ R

of the form

F (u, v) =
uv

αuv + u+ v
.

It is a rational two-place real-valued function defined on a disconnected subset

of the real plane R
2, which satisfies the equation

F (F (x, y), z) = F (x, F (y, z))

for all (x, y, z) ∈ R
3 such that

αxy + x+ y, αyz + y + z, αF (x, y)z + F (x, y) + z, αxF (y, z) + x+ F (y, z)

are not equal to 0. We shall determine all functions f : G −→ R, where (G, ?)

is a group, which satisfy the functional equation

f(x ? y) =
f(x)f(y)

αf(x)f(y) + f(x) + f(y)
. (1)

A neutral element of a group (G, ?) will be written as 0.

By a solution of the functional equation (1) we understand any function

f : G −→ R which satisfies equality (1) for every pair (x, y) ∈ G2 such that

αf(x)f(y) + f(x) + f(y) 6= 0. Thus we deal with the following conditional

functional equation:

αf(x)f(y) + f(x) + f(y) 6= 0
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implies

f(x ? y) =
f(x)f(y)

αf(x)f(y) + f(x) + f(y)
(E)

for all x, y ∈ G.

Some results on addition formulas can be found for example in the work of

K. Domańska and R. Ger [2].

The following lemma will be useful in the sequel (see R. Ger [4]).

Lemma. (On characterization of subgroups). Let (G, ?) be a group. Then

(H, ?) is a subgroup of the group (G, ?) if and only if G ⊃ H 6= ∅ and

H ?H ′ ⊂ H ′,

where H ′ := G \H.

2. Main results

We proceed with a description of solutions of (E) if α = 1.

Theorem 1. Let (G, ?) be a group. A function f : G −→ R yields a noncon-

stant solution to the functional equation

f(x)f(y) + f(x) + f(y) 6= 0

implies

f(x ? y) =
f(x)f(y)

f(x)f(y) + f(x) + f(y)
(E1)

for all x, y ∈ G, if and only if either

f(x) :=

{

−2 if x ∈ H,

0 if x ∈ G \H

or

f(x) :=

{

−1 if x ∈ Γ

−2 if x ∈ G \ Γ

or

f(x) =
1

A(x)− 1
, x ∈ G

where (H, ?), (Γ, ?) are subgroups of the group (G, ?), and A : G −→ R is

a homomorphism such that 1 6∈ A(G).
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Proof. Assume that f is a nonconstant solution of the equation (E1). First

we show that f(0) ∈ {−2,−1, 0}. Indeed, setting x = y = 0 in (E1) we obtain

f(0)2 + 2f(0) = 0 or f(0) =
f(0)2

f(0)2 + 2f(0)
,

hence f(0) ∈ {−2,−1, 0}.

First assume that f(0) = −2. We show that f(G) ⊂ {−2, 0}. In fact, putting

y = 0 in (E1) we obtain

−2f(x) + f(x)− 2 = 0 or f(x) =
−2f(x)

−2f(x) + f(x)− 2

for all x ∈ G. Consequently

f(x) = −2 or f(x) =
2f(x)

f(x) + 2

for all x ∈ G and since the equality

c =
2c

c+ 2

forces c to vanish, we infer that

f(x) = −2 or f(x) = 0

for all x ∈ G. Since f is assumed to be nonconstant, both the complementary

sets

H := {x ∈ G : f(x) = −2} and H ′ = {x ∈ G : f(x) = 0}

are nonempty.

We shall show that H ? H ′ ⊂ H ′, which implies that H is a subgroup of

the group G (see Lemma). Fix arbitrarily elements x ∈ H and y ∈ H ′. Since

f(x)f(y) + f(x) + f(y) = −2, we get f(x ? y) = 0 by (E1) i.e. x ? y ∈ H ′,

which was to be shown. So, in this case we have

f(x) :=

{

−2 if x ∈ H,

0 if x ∈ G \H.

Let now f(0) = −1. Assume that f(a) = 0 for some a 6= 0. Putting x = 0 and

y = a in (E1) we get f(0) = 0 which leads to a contradiction. Consequently,

in this case we have f(x) 6= 0 for all x ∈ G. We define a function A : G −→ R

by the formula

A(x) =
1

f(x)
+ 1, x ∈ G.
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Observe that 1 6∈ A(G). A straightforward verification shows that

f(x)f(y) + f(x) + f(y) = 0 if and only if A(x) +A(y) = 1

for all x, y ∈ G. Thus jointly with (E1) we infer that

A(x) +A(y) 6= 1

implies

A(x ? y) = 1 +
f(x)f(y) + f(x) + f(y)

f(x)f(y)
= 2 +

1

f(x)
+

1

f(y)
= A(x) +A(y)

which states that the function A yields a solution of the equation

g(x) + g(y) 6= 1 implies g(x ? y) = g(x) + g(y)

for all x, y ∈ G.

Since f(0) = −1, evidently A(0) = 0. From the theorem proved by R. Ger

[3] (since A(0) = 0) we conclude that A yields a homomorphism of groups G

and R or there exists a subgroup Γ of the group G such that A is of the form

A(x) :=

{

0 if x ∈ Γ,
1
2 if x ∈ G \ Γ.

Accordingly,

f(x) =
1

A(x)− 1
, x ∈ G

or

f(x) :=

{

−2 if x ∈ Γ,

0 if x ∈ G \ Γ.

Now let f(0) = 0. Putting y = 0 in (E1) we obtain that f(x) = 0 for all x ∈ G,

contradicting the assumption that f is nonconstant. It is easy to check that

each of those functions yields a solution to the equation (E1). Thus the proof

has been completed. �

Now we proceed with a description of solutions of (E).

Theorem 2. Let (G, ?) be a group and α ∈ R \ {0} be fixed. A function

f : G −→ R yields a nonconstant solution to the functional equation

αf(x)f(y) + f(x) + f(y) 6= 0
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implies

f(x ? y) =
f(x)f(y)

αf(x)f(y) + f(x) + f(y)
(E)

for all x, y ∈ G if and only if either

f(x) :=

{

− 2
α

if x ∈ H,

0 if x ∈ G \H

or

f(x) :=

{

− 1
α

if x ∈ Γ

− 2
α

if x ∈ G \ Γ

or

f(x) =
1

α(A(x)− 1)
, x ∈ G

where (H, ?), (Γ, ?) are subgroups of the group (G, ?), and A : G −→ R is a

homomorphism such that 1 6∈ A(G).

Proof. Let α be arbitrarily fixed nonzero number. Assume that f is a non-

constant solution of the equation (E) i.e.

αf(x)f(y) + f(x) + f(y) 6= 0 implies f(x ? y) =
f(x)f(y)

αf(x)f(y) + f(x) + f(y)

for all x, y ∈ G. Hence

α2f(x)f(y)+αf(x)+αf(y) 6= 0 implies αf(x?y) =
αf(x)f(y)

αf(x)f(y) + f(x) + f(y)

for all x, y ∈ G i.e.

αf(x)αf(y) + αf(x) + αf(y) 6= 0 implies αf(x ? y) =

=
α2f(x)f(y)

α2f(x)f(y) + αf(x) + αf(y)
=

αf(x)αf(y)

αf(x)αf(y) + αf(x) + αf(y)

for all x, y ∈ G. Thus it is easy to observe that (E) states that the function

g := αf satisfies the following functional equation:

g(x)g(y) + g(x) + g(y) 6= 0 implies g(x ? y) =
g(x)g(y)

g(x)g(y) + g(x) + g(y)

for all x, y ∈ G. From the Theorem 1 we conclude that g is of the form

g(x) :=

{

−2 if x ∈ H,

0 if x ∈ G \H
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or

g(x) :=

{

−1 if x ∈ Γ

−2 if x ∈ G \ Γ

or

g(x) =
1

A(x)− 1
, x ∈ G

where (H, ?), (Γ, ?) are subgroups of the group (G, ?), and A : Γ −→ R is

a homomorphism such that 1 6∈ A(Γ). This states that f is of the above form.

It is easy to check that each of those functions yields a solution to the

equation (E). Thus the proof has been completed. �

The following remark gives the forms of constant solutions of the equa-

tion (E).

Remark. Let (G, ?) be a groupoid and α be a fixed nonzero number. The only

constant solutions of (E) are as follows: f = − 2
α
, f = 0 and f = − 1

α
.

To check this, assume that f = c fulfils (E). Then

αc2 + 2c 6= 0 implies c =
c2

αc2 + 2c

i.e.

c = 0 or αc+ 2 = 0 or 1 =
1

αc+ 2
.

Hence

c ∈

{

−
2

α
,−

1

α
, 0

}

,

which was to be shown. �

The following theorem gives the form of solutions of the equation (E) if

α = 0, i.e. the form of solutions of the following equation

f(x) + f(y) 6= 0 implies f(x ? y) =
f(x)f(y)

f(x) + f(y)
(E0)

Theorem 3. Let (G, ?) be a monoid. The only solution f : G −→ R of the

equation (E0) is f = 0.

Proof. Assume that f is a solution of the equation (E0). First we show that

f(0) = 0. In fact, setting x = y = 0 in (E1) we obtain

f(0) = 0 or f(0) =
f(0)2

2f(0)
=

1

2
f(0)
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whence f(0) = 0. Fix arbitrarily an x ∈ G and take y = 0. Then, by (E0), we

get

f(x) 6= 0 =⇒ f(x) = 0

which implies f = 0 and which was to be shown. It is easy to check that f = 0

yields a solution to the equation (E0). Thus the proof has been completed. �
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