SCIENTIFIC ISSUES Jan Długosz University in Częstochowa Mathematics XVII (2012) 17–24

ON SOME ADDITION FORMULAS FOR HOMOGRAPHIC TYPE FUNCTIONS

KATARZYNA DOMAŃSKA

Abstract

We deal with the functional equation (so called addition formula) of the form

$$f(x+y) = F(f(x), f(y))$$

where F is an associative rational function. The class of associative rational functions was described by A. Chéritat [1] and his work was followed by a paper of the author. For function F defined by

$$F(x,y) = \varphi^{-1}(\varphi(x) + \varphi(y)),$$

where φ is a homographic function, the addition formula is fulfilled by homographic type functions. We consider the class of the associative rational functions defined by formula

$$F(u,v) = \frac{uv}{\alpha uv + u + v},$$

where α is a fixed real number.

1. INTRODUCTION

For the rational two-place real-valued function F given by

$$F(x,y) = \varphi^{-1}(\varphi(x) + \varphi(y)), \tag{H}$$

where φ is a homographic function, the addition formula has the form

$$\varphi(f(x+y)) = \varphi(f(x)) + \varphi(f(y))$$

and it is a conditional functional equation if the domain of φ is not equal to \mathbb{R}^2 . Solutions of the above conditional equation are homographic type functions.

Katarzyna Domańska — Jan Długosz University in Częstochowa.

If F is associative and rational then the form (H) states that it belongs to one of the following classes (all of them are considered in their natural domains):

$$F(u,v) = \frac{uv}{\alpha uv + u + v}$$

$$F(u,v) = \frac{u + v + 2\lambda uv}{1 - \lambda^2 uv}$$

$$F(u,v) = \frac{uv - \lambda^2}{u + v + 2\lambda}$$

$$F(u,v) = \frac{(1 - 2\lambda)uv - \frac{\lambda}{\mu}(u + v) - \frac{1}{\mu^2}}{\lambda \mu uv + u + v + \frac{2-\lambda}{\mu}}$$

where $\alpha \in \mathbb{R}, \lambda, \mu \in \mathbb{R} \setminus \{0\}$ (it is a consequence of the associativity).

Let $\alpha \in \mathbb{R}$ be arbitrary fixed. We consider the rational function

$$F: \{(x,y) \in \mathbb{R}^2 : \alpha xy + x + y \neq 0\} \longrightarrow \mathbb{R}$$

of the form

$$F(u,v) = \frac{uv}{\alpha uv + u + v}.$$

It is a rational two-place real-valued function defined on a disconnected subset of the real plane \mathbb{R}^2 , which satisfies the equation

$$F(F(x, y), z) = F(x, F(y, z))$$

for all $(x, y, z) \in \mathbb{R}^3$ such that

$$\alpha xy + x + y, \alpha yz + y + z, \alpha F(x, y)z + F(x, y) + z, \alpha xF(y, z) + x + F(y, z)$$

are not equal to 0. We shall determine all functions $f: G \longrightarrow \mathbb{R}$, where (G, \star) is a group, which satisfy the functional equation

$$f(x \star y) = \frac{f(x)f(y)}{\alpha f(x)f(y) + f(x) + f(y)}.$$
 (1)

A neutral element of a group (G, \star) will be written as 0.

By a solution of the functional equation (1) we understand any function $f: G \longrightarrow \mathbb{R}$ which satisfies equality (1) for every pair $(x, y) \in G^2$ such that $\alpha f(x)f(y) + f(x) + f(y) \neq 0$. Thus we deal with the following conditional functional equation:

$$\alpha f(x)f(y) + f(x) + f(y) \neq 0$$

implies

$$f(x \star y) = \frac{f(x)f(y)}{\alpha f(x)f(y) + f(x) + f(y)}$$
(E)

for all $x, y \in G$.

Some results on addition formulas can be found for example in the work of K. Domańska and R. Ger [2].

The following lemma will be useful in the sequel (see R. Ger [4]).

Lemma. (On characterization of subgroups). Let (G, \star) be a group. Then (H, \star) is a subgroup of the group (G, \star) if and only if $G \supset H \neq \emptyset$ and

$$H \star H' \subset H',$$

where $H' := G \setminus H$.

2. Main results

We proceed with a description of solutions of (E) if $\alpha = 1$.

Theorem 1. Let (G, \star) be a group. A function $f : G \longrightarrow \mathbb{R}$ yields a nonconstant solution to the functional equation

$$f(x)f(y) + f(x) + f(y) \neq 0$$

implies

$$f(x \star y) = \frac{f(x)f(y)}{f(x)f(y) + f(x) + f(y)}$$
(E1)

for all $x, y \in G$, if and only if either

$$f(x) := \begin{cases} -2 & \text{if } x \in H, \\ 0 & \text{if } x \in G \setminus H \end{cases}$$

or

$$f(x) := \begin{cases} -1 & \text{if } x \in \Gamma \\ -2 & \text{if } x \in G \setminus \Gamma \end{cases}$$

or

$$f(x) = \frac{1}{A(x) - 1}, \quad x \in G$$

where $(H, \star), (\Gamma, \star)$ are subgroups of the group (G, \star) , and $A : G \longrightarrow \mathbb{R}$ is a homomorphism such that $1 \notin A(G)$.

Proof. Assume that f is a nonconstant solution of the equation (E1). First we show that $f(0) \in \{-2, -1, 0\}$. Indeed, setting x = y = 0 in (E1) we obtain

$$f(0)^2 + 2f(0) = 0$$
 or $f(0) = \frac{f(0)^2}{f(0)^2 + 2f(0)}$,

hence $f(0) \in \{-2, -1, 0\}$.

First assume that f(0) = -2. We show that $f(G) \subset \{-2, 0\}$. In fact, putting y = 0 in (E1) we obtain

$$-2f(x) + f(x) - 2 = 0$$
 or $f(x) = \frac{-2f(x)}{-2f(x) + f(x) - 2}$

for all $x \in G$. Consequently

$$f(x) = -2$$
 or $f(x) = \frac{2f(x)}{f(x) + 2}$

for all $x \in G$ and since the equality

$$c = \frac{2c}{c+2}$$

forces c to vanish, we infer that

$$f(x) = -2 \quad \text{or} \quad f(x) = 0$$

for all $x \in G$. Since f is assumed to be nonconstant, both the complementary sets

$$H := \{x \in G : f(x) = -2\}$$
 and $H' = \{x \in G : f(x) = 0\}$

are nonempty.

We shall show that $H \star H' \subset H'$, which implies that H is a subgroup of the group G (see Lemma). Fix arbitrarily elements $x \in H$ and $y \in H'$. Since f(x)f(y) + f(x) + f(y) = -2, we get $f(x \star y) = 0$ by (E1) i.e. $x \star y \in H'$, which was to be shown. So, in this case we have

$$f(x) := \begin{cases} -2 & \text{if } x \in H, \\ 0 & \text{if } x \in G \setminus H \end{cases}$$

Let now f(0) = -1. Assume that f(a) = 0 for some $a \neq 0$. Putting x = 0 and y = a in (E1) we get f(0) = 0 which leads to a contradiction. Consequently, in this case we have $f(x) \neq 0$ for all $x \in G$. We define a function $A : G \longrightarrow \mathbb{R}$ by the formula

$$A(x) = \frac{1}{f(x)} + 1, \quad x \in G$$

Observe that $1 \notin A(G)$. A straightforward verification shows that

$$f(x)f(y) + f(x) + f(y) = 0$$
 if and only if $A(x) + A(y) = 1$

for all $x, y \in G$. Thus jointly with (E1) we infer that

$$A(x) + A(y) \neq 1$$

implies

$$A(x \star y) = 1 + \frac{f(x)f(y) + f(x) + f(y)}{f(x)f(y)} = 2 + \frac{1}{f(x)} + \frac{1}{f(y)} = A(x) + A(y)$$

which states that the function A yields a solution of the equation

$$g(x) + g(y) \neq 1$$
 implies $g(x \star y) = g(x) + g(y)$

for all $x, y \in G$.

Since f(0) = -1, evidently A(0) = 0. From the theorem proved by R. Ger [3] (since A(0) = 0) we conclude that A yields a homomorphism of groups G and \mathbb{R} or there exists a subgroup Γ of the group G such that A is of the form

$$A(x) := \begin{cases} 0 & \text{if } x \in \Gamma, \\ \frac{1}{2} & \text{if } x \in G \setminus \Gamma. \end{cases}$$

Accordingly,

$$f(x) = \frac{1}{A(x) - 1}, \quad x \in G$$

or

$$f(x) := \begin{cases} -2 & \text{if } x \in \Gamma, \\ 0 & \text{if } x \in G \setminus \Gamma \end{cases}$$

Now let f(0) = 0. Putting y = 0 in (E1) we obtain that f(x) = 0 for all $x \in G$, contradicting the assumption that f is nonconstant. It is easy to check that each of those functions yields a solution to the equation (E1). Thus the proof has been completed.

Now we proceed with a description of solutions of (E).

Theorem 2. Let (G, \star) be a group and $\alpha \in \mathbb{R} \setminus \{0\}$ be fixed. A function $f: G \longrightarrow \mathbb{R}$ yields a nonconstant solution to the functional equation

$$\alpha f(x)f(y) + f(x) + f(y) \neq 0$$

implies

$$f(x \star y) = \frac{f(x)f(y)}{\alpha f(x)f(y) + f(x) + f(y)}$$
(E)

for all $x, y \in G$ if and only if either

$$f(x) := \begin{cases} -\frac{2}{\alpha} & \text{if } x \in H, \\ 0 & \text{if } x \in G \setminus H \end{cases}$$

or

$$f(x) := \begin{cases} -\frac{1}{\alpha} & \text{if } x \in \Gamma \\ -\frac{2}{\alpha} & \text{if } x \in G \setminus \Gamma \end{cases}$$

or

$$f(x) = \frac{1}{\alpha(A(x) - 1)}, \quad x \in G$$

where (H, \star) , (Γ, \star) are subgroups of the group (G, \star) , and $A : G \longrightarrow \mathbb{R}$ is a homomorphism such that $1 \notin A(G)$.

Proof. Let α be arbitrarily fixed nonzero number. Assume that f is a nonconstant solution of the equation (E) i.e.

$$\alpha f(x)f(y) + f(x) + f(y) \neq 0$$
 implies $f(x \star y) = \frac{f(x)f(y)}{\alpha f(x)f(y) + f(x) + f(y)}$

for all $x, y \in G$. Hence

$$\alpha^2 f(x)f(y) + \alpha f(x) + \alpha f(y) \neq 0 \text{ implies } \alpha f(x \star y) = \frac{\alpha f(x)f(y)}{\alpha f(x)f(y) + f(x) + f(y)}$$

for all $x, y \in G$ i.e.

$$\alpha f(x)\alpha f(y) + \alpha f(x) + \alpha f(y) \neq 0 \quad \text{implies} \quad \alpha f(x \star y) =$$
$$= \frac{\alpha^2 f(x)f(y)}{\alpha^2 f(x)f(y) + \alpha f(x) + \alpha f(y)} = \frac{\alpha f(x)\alpha f(y)}{\alpha f(x)\alpha f(y) + \alpha f(x) + \alpha f(y)}$$

for all $x, y \in G$. Thus it is easy to observe that (E) states that the function $g := \alpha f$ satisfies the following functional equation:

$$g(x)g(y) + g(x) + g(y) \neq 0 \quad \text{implies} \quad g(x \star y) = \frac{g(x)g(y)}{g(x)g(y) + g(x) + g(y)}$$

for all $x, y \in G$. From the Theorem 1 we conclude that g is of the form

$$g(x) := \begin{cases} -2 & \text{if } x \in H, \\ 0 & \text{if } x \in G \setminus H \end{cases}$$

22

or

$$g(x) := \begin{cases} -1 & \text{if } x \in \Gamma \\ -2 & \text{if } x \in G \setminus \Gamma \end{cases}$$

or

$$g(x) = \frac{1}{A(x) - 1}, \quad x \in G$$

where $(H, \star), (\Gamma, \star)$ are subgroups of the group (G, \star) , and $A : \Gamma \longrightarrow \mathbb{R}$ is a homomorphism such that $1 \notin A(\Gamma)$. This states that f is of the above form.

It is easy to check that each of those functions yields a solution to the equation (E). Thus the proof has been completed. $\hfill \Box$

The following remark gives the forms of constant solutions of the equation (E).

Remark. Let (G, \star) be a groupoid and α be a fixed nonzero number. The only constant solutions of (E) are as follows: $f = -\frac{2}{\alpha}$, f = 0 and $f = -\frac{1}{\alpha}$.

To check this, assume that f = c fulfils (E). Then

$$\alpha c^2 + 2c \neq 0$$
 implies $c = \frac{c^2}{\alpha c^2 + 2c}$

i.e.

$$c = 0$$
 or $\alpha c + 2 = 0$ or $1 = \frac{1}{\alpha c + 2}$.

Hence

$$c \in \left\{-\frac{2}{\alpha}, -\frac{1}{\alpha}, 0\right\},$$

which was to be shown.

The following theorem gives the form of solutions of the equation (E) if $\alpha = 0$, i.e. the form of solutions of the following equation

$$f(x) + f(y) \neq 0 \quad \text{implies} \quad f(x \star y) = \frac{f(x)f(y)}{f(x) + f(y)} \tag{E0}$$

Theorem 3. Let (G, \star) be a monoid. The only solution $f : G \longrightarrow \mathbb{R}$ of the equation (E0) is f = 0.

Proof. Assume that f is a solution of the equation (E0). First we show that f(0) = 0. In fact, setting x = y = 0 in (E1) we obtain

$$f(0) = 0$$
 or $f(0) = \frac{f(0)^2}{2f(0)} = \frac{1}{2}f(0)$

whence f(0) = 0. Fix arbitrarily an $x \in G$ and take y = 0. Then, by (E0), we get

$$f(x) \neq 0 \Longrightarrow f(x) = 0$$

which implies f = 0 and which was to be shown. It is easy to check that f = 0 yields a solution to the equation (E0). Thus the proof has been completed. \Box

References

- A. Chéritat, Fractions rationnelles associatives et corps quadratiques, Revue des Mathématiques de l'Enseignement Supérieur 109 (1998-1999), 1025-1040.
- [2] K. Domańska, R. Ger, Addition formulae with singularities, Annales Mathematicae Silesianae 18 (2004), 7-20.
- [3] R. Ger, On some functional equations with a restricted domain, II., Fundamenta Mathematicae 98 (1978), 249-272.
- [4] R. Ger, O pewnych równaniach funkcyjnych z obciętą dziedziną, Prace Naukowe Uniwersytetu Śląskiego, Nr 132, Katowice, 1976.

Katarzyna Domańska Jan Długosz University, Institute of Mathematics and Computer Science, 42-200 Częstochowa, Al. Armii Krajowej 13/15, Poland *E-mail address*: k.domanska@ajd.czest.pl

24