PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Structural, optical, and photoluminescence properties of CdWO4 films synthesized by a chemical bath deposition method

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Thin cadmium tungstate (CdWO4) films have gained growing interest in the last few decades because of their high X-ray absorption coefficient and low radiation damage. Various applications are known for CdWO4, such as sensors in radiation detectors and photocatalytic degradation of organic compounds. In this work, we report a simple and cost-effective chemical bath deposition method of CdWO4 thin films on glass substrates from one solution. The films were annealed at 600°C for 1 h in air. The scanning electron microscopy/energy-dispersive X-ray spectroscopy analysis revealed a dense structure of the films with multiple defects (cracks and craters), along with a nonstoichiometric W-rich composition. Raman and Fourier transform infrared spectroscopy confirmed the presence of CdWO4 through v1 and v₃ vibrational modes. X-ray diffraction patterns showed a typical monoclinic CdWO4 structure, along with a minor presence of secondary phases (CdO and WO) in the annealed sample at 600°C. UV-vis transmission spectra and the corresponding Tauc plot indicated a direct band gap of 2.62 eV. Reflectance spectra demonstrated intrinsic luminescence under high-energy UV radiation, with a broad emission peak at 500 nm. Preliminary electrochromic tests showed that the films exhibited electrochromic behaviour, with the in situ measured transmittance at 550 nm changing by approximately 55%. With further optimization, CdWO4 films prepared by this method could be applied for high-energy radiation detectors, such as those for UV and X-ray detection, which will be the subject of future research.
Wydawca
Rocznik
Strony
93--102
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
  • Physics Department, Faculty of Natural Sciences and Mathematics, University Ss Cyril and Methodius Arhimedova 3, Skopje 1000, North Macedonia
  • Physics Department, Faculty of Natural Sciences and Mathematics, University Ss Cyril and Methodius Arhimedova 3, Skopje 1000, North Macedonia
Bibliografia
  • [1] Bergum, K., Magrasó, A., Fjellvåg, H., Nilsen, O., Thin film fabrication and characterization of proton conducting lanthanum tungstate, J. Mater. Chem. A Mater., 2014, 2(43): 18463–18471. doi:10.1039/c4ta03359k
  • [2] Sivaperuman, K., Thomas, A., Thangavel, R., Thirumalaisamy, L., Palanivel, S., Pitchaimuthu, S., et al., Binary and ternary metal oxide semiconductor thin films for effective gas sensing applications: A comprehensive review and future prospects, Prog. Mater. Sci., 2024, 142: 101222. doi: 10.1016/J.PMATSCI.2023.101222
  • [3] Ziluei, H., Larijani, M. M., Azimirad, R., Ziaei, F., Fabrication of an alpha particle counter: Spin coated films of synthesized nanocrystalline cadmium tungstate powder, Int. J. Radiat. Res., 2017, 15(4): 425–430. doi: 10.18869/acadpub.ijrr.15.4.425
  • [4] Errandonea, D., Ruiz-Fuertes, J., A brief review of the effects of pressure on wolframite-type oxides, Crystals, 2018, 8(2): 71. doi: 10.3390/cryst8020071
  • [5] Moghadam, M. T. T., Babamoradi, M., Azimirad, R., Effect of hydrothermal reaction temperature on the photocatalytic properties of CdWO4-RGO nanocomposites, J. Nanostruct., 2019, 9(4): 600–609. doi: 10.22052/JNS.2019.04.001
  • [6] Taoufyq, A., Mauroy, V., Fiorido, T., Guinneton, F., Valmalette, J. C., Bakiz, B., et al., Photoluminescence properties of CaWO4 and CdWO4 thin films deposited on SiO2/Si substrates, J. Lumin., 2019, 215: 116619. doi: 10.1016/j.jlumin.2019.116619
  • [7] Zawawi, S. M. M., Yahya, R., Hassan, A., Mahmud, H. N. M. E., Daud, M. N., Structural and optical characterization of metal tungstates (MWO4; M = Ni, Ba, Bi) synthesized by a sucrose-templated method, Chem. Cent. J., 2013, 7(1): 80. doi: 10.1186/1752-153X-7-80
  • [8] Taoufyq, A., Mauroy, V., Guinneton, F., Bakiz, B., Villain, S., Hallaoui, A., et al., Role of the chemical substitution on the luminescence properties of solid solutions Ca(1-x)Cd(x)WO4 (0 ≤ x ≤ 1), Mater. Res. Bull., 2015, 70: 40–46. doi: 10.1016/j.materresbull.2015.04.006
  • [9] Taoufyq, A., Guinneton, F., Valmalette, J. C., Arab, M., Benlhachemi, A., Bakiz, B., et al., Structural, vibrational and luminescence properties of the (1-x) CaWO4-xCdWO4 system, J. Solid. State Chem., 2014, 219: 127–137. doi: 10.1016/j.jssc.2014.07.017
  • [10] Shang, H., Wang, Y., Milbrath, B., Bliss, M., Cao, G., Doping effects in nanostructured cadmium tungstate scintillation films, J. Lumin., 2006, 121(2): 527–534. doi:10.1016/j.jlumin.2005.12.048
  • [11] Rzhevskaya, O. V., Spasskiĭ, D. A., Kolobanov, V. N., Mikhaĭlin, V. V., Nagornaya, L. L., Tupitsina, I.A., et al., Optical and luminescence properties of CdWO4 and CdWO4:Mo single crystals, Opt. Spectrosc. (English translation of Optika i Spektroskopiya), 2008, 104(3): 366–373. doi:10.1134/s0030400x08030090
  • [12] Buch, V. R., Chawla, A. K., Rawal, S. K., Review on electrochromic property for WO3 thin films using different deposition techniques, Mater. Today Proc., 2016, 3(6): 1429–1437. doi: 10.1016/J.MATPR.2016.04.025
  • [13] Cullity, B. D., Stock, S. R., Elements of X-ray diffraction, 3rd ed., Pearson Education Limited, Edinburgh Gate, Harlow, UK, 2001
  • [14] Archbold, M. D., Halliday, D. P., Durose, K., Hase, T. P., Boyle, D. S., Mazzamuto, S., et al., Development of low temperature approaches to device quality CdS: A modified geometry for solution growth of thin films and their characterisation, Thin Solid. Films, 2007, 515(5): 2954–2957. doi: 10.1016/j.tsf.2006.09.005
  • [15] Khallaf, H., Oladeji, I. O., Chai, G., Chow, L., Characterization of CdS thin films grown by chemical bath deposition using four different cadmium sources, Thin Solid. Films, 2008, 516(21): 7306–7312. doi: 10.1016/j.tsf.2008.01.004
  • [16] Makuła, P., Pacia, M., Macyk, W., How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV-Vis spectra, J. Phys. Chem. Lett., 2018, 9(23): 6814–6817. doi: 10.1021/acs.jpclett.8b02892
  • [17] Zhou, X., Liu, T., Zhang, Q., Cheng, F., Qiao, H., Electronic structure and optical properties of CdWO4 with oxygen vacancy studied from first principles,Solid. State Commun., 2010, 150(1–2): 5–8. doi:10.1016/j.ssc.2009.10.019
  • [18] Gabrusenoks, J., Veispals, A., Von Czarnowski, A., Meiwes-Broer, K. H., Infrared and Raman spectroscopy of WO3 and CdWO4, Electrochim. Acta, 2001, 46: 2229–2231. www.elsevier.nl/locate/electacta
  • [19] Hardcastle, F. D., Determination of the molecular structures of tungstates by Raman spectroscopy, J. Raman Spectrosc., 1995, 26: 397–405. doi: 10.1002/jrs.1250260603
  • [20] Basiev, T. T., Sobol, A. A., Voronko, Y. K., Zverev, P. G., Spontaneous Raman spectroscopy of tungstate and molybdate crystals for Raman lasers, Opt. Mater. (Amst.), 2000, 15: 205–216. doi: 10.1016/s0925-3467(00)00037-9
  • [21] Fomichev, V. V., Kondratov, I., Vibrational spectra of compounds with the wolframite structure, Spectrochim. Acta, 1994, 50A(6): 1113–1120. doi: 10.1016/0584-8539(94)80034-0
  • [22] Burshtein, Z., Morgan, S., Henderson, D., Silberman, E., Spatial dispersion in polariton spectra of cadmiumtungstate (CdWO4) single crystals, J. Phys. Chem. Solids, 1988,49: 1295–1302. doi: 10.1016/0022-3697(88)90211-9
  • [23] Acts, S., Zda, Y., Forbidden transitions in the infra-red spectra of tetrahedral anions - VIII Spectra and structures of molybdates, tungstatesand periodates of the formula MXO4, Spectrochim. Acta, 1970, 26A: 968–970. doi: 10.1016/0584-8539(70)80291-4
  • [24] Ruiz-Fuertes, J., Friedrich, A., Errandonea, D., Segura, A., Morgenroth, W., Rodríguez-Hernández, P., et al., Optical and structural study of the pressureinduced phase transition of CdWO4, Phys. Rev. B, 2017, 95(17): 174105. doi: 10.1103/PhysRevB.95.174105
  • [25] Eranjaneya, H., Chandrappa, G. T., Selective synthesis of scheelite/perovskite CdWO4 nanoparticles: a mechanistic investigation of phase formation and property correlation, J. Solgel Sci. Technol., 2018, 85(3): 585–594. doi: 10.1007/s10971-017-4545-2
  • [26] Shang, H. M., Wang, Y., Bliss, M., Cao, G. Z., Hydrothermal growth and photoluminescence property of textured CdWO4 scintillator films, Appl. Phys. Lett., 2005, 87(5): 051909. doi: 10.1063/1.2001133
  • [27] He, K., Chen, N., Wang, C., Wei, L., Chen, J., Method for determining crystal grain size by X-ray diffraction, Cryst. Res. Technol., 2018, 53(2): 1700157. doi: 10. 1002/crat.201700157
  • [28] Khatun, N., Tiwari, S., Lal, J., Tseng, C. M., Liu, S. W., Biring, S., et al., Structural phase transition, grain growth and optical properties of uncompensated Ga-V co-doped TiO2, ArXiv: Appl. Phys., 2018, (1): 1–23. doi:10.48550/arXiv.1806.09159
  • [29] Fazzini, T. I., Bizzeti, P. G., Maurenzig, P. R., Stramaccioni, C., Danevich, F. A., Kobychev, V. V., et al., Pulse-shape discrimination with CdWO4 crystal scintillators, Nucl. Instrum. Methods Phys. Res. A, 1998, 410: 213–219. doi: 10.1016/s0168-9002(98) 00179-x
  • [30] Li, L., Li, J., Kim, B. K. H., Huang, J., The effect of morphology and crystal structure on the photocatalytic and photoelectrochemical performances of WO3, RSC Adv., 2024, 14(3): 2080–2087. doi: 10.1039/d3ra07329g Properties of CdWO4 films synthesized by chemical bath deposition 102
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e596373b-3e2f-48d8-90d8-0866fc906a43
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.