PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Some notes on the IUGS classification of lamprophyric rocks

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The lamprophyric rocks are uncommon volatile-rich melanocratic porphyritic rocks which contain only mafic phenocrysts. The felsic minerals are confined in the groundmass. They occur as dikes, sills and diatremes. The lamprophyric rocks are sometimes associated with diamond deposits. This review article discusses the ongoing debate in igneous petrology regarding the classification of lamprophyric rocks, specifically the Lamprophyre clan vs Lamprophyre facies problem. The background of this debate is rooted in conflicting interpretations of the classification of these rocks, with some researchers grouping them into a super-group called the "Lamprophyre clan" while others emphasize the distinction between the different types of these rocks (Lamprophyre facies). The aim of this study is to provide a comprehensive analysis of relevant literature and propose a more inclusive petrological classification system for lamprophyric rocks by considering the geological setting, petrography, texture, mineralogy, whole-rock geochemistry and isotopic analysis of the various kimberlites, orangeites, lamproites, para-lamproites, calc-alkaline, alkaline and ultramafic lamprophyres. Lastly, the diamond potential is also taken into account. The implications of this study are significant for the international geological community. It proposes the adoption by the IUGS TGIR of both the Lamprophyre clan (as updated by Kamvisis & Phani, 2022, i.e. genetically interrelated rocks) and Lamprophyre facies (as suggested by Mitchell, 1994, i.e. rocks that formed under volatile-rich conditions) concepts to achieve a more widespread consensus among igneous petrologists. Both terms can be correct but they represent different perspectives in the study of these exotic rocks.
Słowa kluczowe
Czasopismo
Rocznik
Strony
30--39
Opis fizyczny
Bibliogr. [67] poz., rys., tab., wykr.
Twórcy
  • Consultant’s Geologist’s Office, Greek Ministry of Defence, 15561, Greece
  • Mining & Natural Resources, Cyient Ltd., Hyderabad- 500 039, India
Bibliografia
  • Beard, A. D., Downes, H., Hegner, E., and Sablukov, S. M. (2000). Geochemistry and mineralogy of kimberlites from the Arkhangelsk Region, NW Russia: evidence for transitional kimberlite magma types. Lithos, 51(1-2), p. 47–73. https://doi.org/10.1016/S0024- 4937(99)00074-2
  • Birch, W. D. & Barron, L. M. (1997). Diamonds. Gem minerals of Victoria. Special Publication Mineralogical Society of Victoria 4, p. 16–33.
  • Bottrill, R. S. (1998). Diamond in Tasmania. Tasmanian Geological Survey Record 09, p. 1–6.
  • Casalini, M., Avanzinelli, R., Tommasini, S., Natali, C., Bianchini, G., Prelević, D., ... and Conticelli, S. (2022). Petrogenesis of Mediterranean lamproites and associated rocks: The role of overprinted metasomatic events in the post-collisional lithospheric upper mantle. https://doi. org/10.1144/SP513-2021-36
  • Chalapathi Rao, N. C., Giri, R. K., Sharma, A., and Pandey, A. (2020). Lamprophyres from the Indian shield: A review of their occurrence, petrology, tectonomagmatic significance and relationship with the Kimberlites and related rocks. Episodes Journal of International Geoscience, 43(1), p. 231–248. https://doi. org/10.18814/epiiugs/2020/020014
  • Chan, G. N., Malpas, J., Xenophontos, C., & Lo, C. H. (2008). Magmatism associated with Gondwanaland rifting and Neo-Tethyan oceanic basin development: evidence from the Mamonia Complex, SW Cyprus. Journal of the Geological Society, 165(3), p. 699–709. https:// doi.org/10.1144/0016-76492007-050
  • Dai, H. K., Oliveira, B., Zheng, J. P., Griffin, W. L., Afonso, J. C., Xiong, Q., and O’Reilly, S. Y. (2021). Melting dynamics of Late Cretaceous lamprophyres in central Asia suggest a mechanism to explain many continental intraplate basaltic suite magmatic provinces. Journal of Geophysical Research Solid Earth, 126(4), e2021JB021663. https://doi. org/10.1029/2021JB021663
  • Dalton, H., Giuliani, A., and Pearson, D. G. (2024). A new global kimberlite geochemistry dataset: the benefits of open and complete data sharing. International Kimberlite Conference: Extended Abstracts, 12. https://doi. org/10.29173/ikc4179
  • Davies, R. M., O’Reilly, S. Y., Griffin, W. L. (2002). Multiple origins of alluvial diamonds from New South Wales, Australia. Economic Geology, 97 (1), p. 109–123. https://doi.org/10.2113/gsecongeo.97.1.109
  • Gill, R., & Fitton, G. (2022). Igneous rocks and processes: a practical guide. J. Wiley and Sons, 496 p. https://bcs.wiley. com/he-bcs/Books?action=chapter&bcsId=12385& itemId=1119455669&chapterId=148510
  • Giuliani, A., Jackson, M. G., Fitzpayne, A., and Dalton, H. (2021). Remnants of early Earth differentiation in the deepest mantle-derived lavas. Proceedings of the National Academy of Sciences, 118(1), e2015211118. https://doi.org/10.1073/pnas.2015211118
  • Gläser, L., Grosche, A., Voudouris, P. C., and Haase, K. M. (2022). The high-K calc-alkaline to shoshonitic volcanism of Limnos, Greece: Implications for the geodynamic evolution of the northern Aegean. Contributions to Mineralogy and Petrology, 177(8), p. 73. https://doi. org/10.1007/s00410-022-01940-7
  • Godard, G., Chabou, M. C., Adjerid, Z., Bendaoud, A. (2014). First African diamonds discovered in Algeria by the ancient Arabo-Berbers: History and insight into the source rocks. Comptes Rendus Geoscience, 346 (7–8), p. 179–189. https://doi.org/10.1016/j.crte.2014.03.007
  • Griffin, W. L., O’Reilly, S. Y., and Davies, R. M. (2000). Subduction—related diamond deposits? Constraints, possibilities and new data from eastern Australia. Reviews in Economic Geology, 11, p. 291–310.
  • Hall, A. (1982). The Pendennis peralkaline minette. Mineralogical Magazine, 45(337), p. 257-266. https:// doi.org/10.1180/minmag.1982.045.337.29
  • Hausel, W. D. (1998). Diamonds and mantle source rocks in the Wyoming craton with a discussion of other US occurrences. Wyoming State Geological Survey Report of Investigations 53, 93 p.
  • Hutchison, M. T., & Frei, D. (2009). Kimberlite and related rocks from Garnet Lake, West Greenland, including their mantle constituents, diamond occurrence, age and provenance. Lithos, 112, p. 318–333. https://doi. org/10.1016/j.lithos.2009.05.034
  • Izokh, A. E., Chayka, I. F., Gaskov, I. V., and Egorova (2024). Differentiation of Lamproitic Magma: Case Study of Mesozoic High-K Dikes of the Ryabinovyi Massif (Central Aldan). Russian Geology and Geophysics, 65(2), p. 195- 213. https://doi.org/10.2113/RGG20234610
  • John J. St. (2016). The Thumb (Navajo Volcanic Field, northwestern New Mexico, USA) https://www. flickr.com/photos/jsjgeology/29472674481/in/ photostream/
  • Kaminsky, F. V., Sablukov, S. M., Sablukova, L. I., and Channer, D. M. D. (2004). Neoproterozoic ‘anomalous’ kimberlites of Guaniamo, Venezuela: mica kimberlites of ‘isotopic transitional type. Lithos, 76(1-4), p. 565–590. https:// doi.org/10.1016/j.lithos.2004.03.035
  • Kamvisis, I., & Phani, P. R. C. (2022). The “Lamprophyre Clan” Revisited. Journal of the Geological Society of India, 98(9), p.1205–1209. https://doi.org/10.1007/s12594- 022-2153-4
  • Kamvisis, I.-N. G., Vasyukova, E. A. (2021). Simple steps for the detection and classification of different lamprophyric rocks: a case study from Greece. Mineralogia, 52 (1), p. 1–9. https://doi.org/10.2478/mipo-2021-0001
  • Kjarsgaard, B. A., de Wit, M., Heaman, L. M., Pearson, D. G., Stiefenhofer, J., Janusczcak, N., and Shirey, S. B. (2022). A review of the geology of global diamond mines and deposits. Reviews in Mineralogy and Geochemistry, 88(1), p. 1–117. https://doi.org/10.2138/ rmg.2022.88.01
  • Kopylova M. G. (2022). What lamprophyres teach us about kimberlites: Lessons from the Kola Alkaline Carbonatitic Province https://www.youtube.com/ watch?v=aZJbpjpATpcandfeature=youtu.be
  • Krmíček, L., & Chalapathi Rao, N. (2022). Lamprophyres, lamproites and related rocks as tracers to supercontinent cycles and metallogenesis. https://doi. org/10.1144/SP513-2021-159
  • Krmíček, L., Romer, R. L., Timmerman, M. J., Ulrych, J., Glodny, J., Přichystal, A., and Sudo, M. (2020). Long-lasting (65 Ma) regionally contrasting late-to post-orogenic Variscan mantle-derived potassic magmatism in the Bohemian Massif. Journal of Petrology, 61(7), egaa072. https://doi.org/10.1093/petrology/egaa072
  • Lefebvre, N., Kopylova, M., and Kivi, K. (2005). Archean calcalkaline lamprophyres of Wawa, Ontario, Canada: Unconventional diamondiferous volcaniclastic rocks. Precambrian Research, 138(1-2), 57–87. https:// doi.org/10.1016/j.precamres.2005.04.005
  • Le Maitre, R. W., Streckeisen, A., Zanettin, B., Le Bas, M. J., Bonin, B., and Bateman, P. (Eds.). (2002). Igneous rocks: a classification and glossary of terms: recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks. Cambridge University Press, 236 p.
  • Lustrino, M., Agostini, S., Chalal, Y., Fedele, L., Stagno, Colombi, F., and Bouguerra, A. (2016). Exotic lamproites or normal ultrapotassic rocks? The Late Miocene volcanic rocks from Kef Hahouner, NE Algeria, in the frame of the circum-Mediterranean lamproites. Journal of Volcanology and Geothermal Research, 327, p. 539–553. https://doi.org/10.1016/j. jvolgeores.2016.09.021
  • Lustrino, M., Bonin, B., Doroshkevich, A. et al. (2022). Report of the IUGS Task Group on Igneous Rocks, 7 p.
  • Mei Houjun, Tan Jizu, Zhang Xingchan et al. (1989). Ultrapotassic rocks in Qinghai Xizang (Tibet) Plateau and adjacent areas and their circumstances, Chinese Academy of Sciences Developments in Geoscience of CAS, Contrib. to 28thIGC, Beijing, Science Press 1, p. 119–128.
  • Mitchell, R. H. (1994). The lamprophyre facies. Mineralogy and Petrology, 51, p. 137–146. https://doi.org/10.1007/ BF01159724 Mitchell, R. H. (1995). The role of petrography and lithogeochemistry in exploration for diamondiferous rocks. Journal of Geochemical Exploration, 53(1-3), p. 339–350. https://doi.org/10.1016/0375- 6742(94)00014-3
  • Mitchell, R. H. (2005). Potassic magmas derived from metasomatized lithospheric mantle: nomenclature and relevance to exploration for diamond-bearing rocks. Group Discussion on Kimberlites and Related Rocks of India organised by the Geological Society of India.
  • Mitchell, R. H. (2007). Potassic rocks from the Gondwana coalfields of India: Closing Pandora’s box of petrological confusion? Journal-Geological Society of India, 69(3), p. 505.
  • Mitchell, R. H. (2020). Igneous rock associations 26. Lamproites, exotic potassic alkaline rocks: a review of their nomenclature, characterization and origins. Geoscience Canada, 47(3), p. 119–142. https://doi. org/10.12789/geocanj.2020.47.162
  • Mitchell, R. H., & Bergman, S. C. (1991). Petrology of lamproites. Springer Science and Business Media, p. 447.
  • Nosova, A. A., Sazonova, L. V., Kargin, A. V., Smirnova, M. D., Lapin, A. V., & Shcherbakov, V. D. (2018). Olivine in ultramafic lamprophyres: chemistry, crystallisation, and melt sources of Siberian Preand post-trap aillikites. Contributions to Mineralogy and Petrology, 173, 1–27. https://doi.org/10.1007/ s00410-018-1480-3
  • O’Neill, C., & Wyman, D. A. (2006). Geodynamic modeling of Late Archean subduction: Pressure-temperature constraints from greenstone belt diamond deposits. Washington DC American Geophysical Union Geophysical Monograph Series, 164, p. 177–188. https://doi.org/10.1029/164GM12
  • Peterson, T. D., Van Breemen, O., Sandeman, H., and Cousens, B. (2002). Proterozoic (1.85–1.75 Ga) igneous suites of the Western Churchill Province: granitoid and ultrapotassic magmatism in a reworked Archean hinterland. Precambrian Research, 119(1-4), p. 73–100. https://doi.org/10.1016/S0301-9268(02)00118-3
  • Phani, P. R., & Raju,V. N. (2017). A New kimberlite pipe in Balkamthota Vanka, Pennahobilam, Anantapur district, Andhra Pradesh, India. Field aspects and preliminary investigations. Periodico di Mineralogia, 86(3), p. 213–228. https://doi.org/10.2451/2017PM689
  • Pilbeam, L. H., Nielsen, T. F. D., Waight, T., and Tappe, S. (2024). Links between calcite kimberlite, aillikite and carbonatite in West Greenland: Numeric modeling of compositional relationships. Journal of Petrology, egae059.
  • Polyakov, G., Nguyen, T. Y., Balykin, P., Tran, T. H., Panina, L., Ngo, T. P., … Hoang, V. H. (1995). Geology and substance composition of cocites of North Vietnam. International Kimberlite Conference: Extended Abstracts, 6(1), 449–451. https://doi.org/10.29173/ikc1926
  • Prelević, D., Akal, C. and Foley, S. F. (2008). Orogenic vs anorogenic lamproites in a single volcanic province: Mediterranean-type lamproites from Turkey, Donald D Harrington Symposium on the Geology of the Aegean, IOP Conference Series- Earth and Environmental Science 2, 012024.
  • Prelević, D., Foley, S. F., Cvetković, V. (2007). A review of petrogenesis of Mediterranean Tertiary lamproites: A perspective from the Serbian ultrapotassic province, in Cenozoic Volcanism in the Mediterranean Area, eds. Luigi Beccaluva, Gianluca Bianchini, Marjorie Wilson. https://doi.org/10.1130/2007.2418(06)
  • Rock, N. (1991). Lamprophyres. Springer Science and Business Media 285 p.
  • Romu, I., Luttinen, A. and O’Brien, H. (2008). Lamproiteorangeite transition in 159 Ma dykes of Dronning Maud Land, Antarctica?. International Kimberlite Conference: Extended Abstracts, 9. https://doi. org/10.29173/ikc3579
  • Rosenbusch, H. (1887). Mikroskopische Physiographie der Mineralien und Gesteine. Vol.II. Massige Gesteine. Schweizerbart, Stuttgart. 2nd Edn, 877pp.
  • Sarkar, S., Giuliani, A., Dalton, H., Phillips, D., Ghosh, S., Misev, S., and Maas, R. (2023). Derivation of Lamproites and Kimberlites from a Common Evolving Source in the Convective Mantle: The Case for Southern African ‘Transitional Kimberlites’. Journal of Petrology, 64(7), egad043. https://doi.org/10.1093/petrology/egad043
  • Scott-Smith, B. H. S. (1995). Petrology and diamonds. Exploration and Mining Geology, 2(4), p. 127–140.
  • Scott-Smith, B. (2017). Kimberlites – from mantle to mine. International Kimberlite Conference: Extended Abstracts, 11. https://doi.org/10.29173/ikc4018
  • Sheppard, S., and Taylor, W. R. (1992). Barium-and LREErich, olivine-mica-lamprophyres with affinities to lamproites, Mt. Bundey, Northern Territory, Australia. Lithos, 28(3-6), p. 303–325. https://doi. org/10.1016/0024-4937(92)90012-N
  • Shirey, S. B., Cartigny, P., Frost, D. J., Keshav, S., Nestola, F., Nimis, P., ... and Walter, M. J. (2013). Diamonds and the geology of mantle carbon. Reviews in Mineralogy and Geochemistry, 75(1), p. 355–421. https://doi. org/10.2138/rmg.2013.75.12
  • Smith, C., Bulanova, G., Walter, M., Kohn, S., Mikhail, S., and Gobbo, L. (2012). Origin of diamonds from the Dachine ultramafic, French Guyana. International Kimberlite Conference: Extended Abstracts, 10. https://doi. org/10.29173/ikc3677
  • Smith, C. B., Haggerty, S. E., Chatterjee, B., Beard, A., and Townend, R. (2013). Kimberlite, lamproite, ultramafic lamprophyre, and carbonatite relationships on the Dharwar Craton, India; an example from the Khaderpet pipe, a diamondiferous ultramafic with associated carbonatite intrusion. Lithos, 182, p. 102–113. https:// doi.org/10.1016/j.lithos.2013.10.006
  • Smith, D., Griffin, W. L., Ryan, C. G., & Sie, S. H. (1991). Traceelement zonation in garnets from The Thumb: heating and melt infiltration below the Colorado Plateau. Contributions to Mineralogy and Petrology, 107, p. 60–79. https://doi.org/10.1007/BF00311185
  • Tacker, C. (2014). Ten new North Carolina diamonds.https:// naturalsciencesresearch.wordpress.com/2014/12/04/ ten-new-north-carolina-diamonds/
  • Tappe, S., Foley, S. F., Jenner, G. A., and Kjarsgaard, B. A. (2005). Integrating ultramafic lamprophyres into the IUGS classification of igneous rocks: rationale and implications. Journal of Petrology, 46(9), p. 1893–1900. https://doi.org/10.1093/petrology/egi039
  • Tappe, S., Shaikh, A. M., Wilson, A. H., and Stracke, A. (2022). Evolution of ultrapotassic volcanism on the Kaapvaal craton: deepening the orangeite versus lamproite debate. https://doi.org/10.1144/SP513-2021-84
  • Tran, H. T., Polyakov, G.V., Tran, A. T., Borisenko, A. S., Izokh, A. E., Balykin, P. A., ... and Pham, D. T. (2016). Intraplate magmatism and metallogeny of North Vietnam. Switzerland: Springer International Publishing 372 p. https://doi.org/10.3190/jgeosci.158
  • Ulrych, J., Adamovic, J., Krmíček, L., Ackerman, L., and Balogh, K. (2014). Revision of Scheumann’s classification of melilitic lamprophyres and related melilitic rocks in light of new analytical data. Journal of Geosciences, 59(1), p. 3–22. http://doi. org/10.3190/jgeosci.158
  • Van Gorsel, J. T. (2018). Bibliography of the Geology of Indonesia and Surrounding Areas. Edition 7.0. Chapter II. Sumatra–Sundaland 309 p., https://www. vangorselslist.com/ sundaland.html
  • Vladykin, N. (2008). Formation types of lamproite complexessystematization and chemism. International Kimberlite Conference: Extended Abstracts, 9. https://doi. org/10.29173/ikc3620
  • Wagner, C., and Velde, D. (1985). Mineralogy of two peralkaline, arfvedsonite-bearing minettes. A new occurrence of Zn-rich chromite. Bulletin de minéralogie, 108(2), p. 173–187.
  • Woolley, A. R. (2019). Alkaline Rocks and Carbonatites of the World, Part 4: Antarctica, Asia and Europe (excluding the former USSR), Australasia and Oceanic Islands. GSL 562 p. Woolley, A. R., Bergman, S. C., Edgar, A. D., Le Bas, M. J., Mitchell, R. H., Rock, N. M., and Scott Smith, B. H. (1996). Classification of lamprophyres, lamproites, kimberlites, and the kalsilitic, melilitic, and leucitic rocks. The Canadian Mineralogist, 34(2), p. 175–186.
  • Xiang, L., Zheng, J., Zhai, M., and Siebel, W. (2020). Geochemical and Sr–Nd–Pb isotopic constraints on the origin and petrogenesis of Paleozoic lamproites in the southern Yangtze Block, South China. Contributions to Mineralogy and Petrology, 175, p. 1–18. https://doi. org/10.1007/s00410-020-1668-1
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e59539c4-bedb-4be8-89f9-51e253357215
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.