PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Disconnectivity in geomorphology

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
“Buffers, barriers and blankets” have become recognized as increasingly important components of landscape that constrain rates of denudation. Nevertheless, connectivity continues to be emphasized in recent geomorphic discussions. It is surely the case that spatial and temporal disconnectivity is at least as common as connectivity in geomorphic sediment systems. The importance of intermittency of sediment movement events (disconnectivity over time) has been understood as fundamental in most understandings of landscape evolution. The development of new techniques that make the term connectivity more mathematically precise are much to be welcomed. But the case is argued that more progress has been made in understanding geomorphological spatial and temporal change by interrogating disconnectivity, discontinuities and thresholds.
Rocznik
Strony
9--32
Opis fizyczny
Bibliogr. 82 poz., rys., tab., wykr.
Twórcy
  • Department of Geography, University of British Columbia, Canada
Bibliografia
  • Baartman J.E., Masselink R., Keesstra S.D., Temme A.J., 2013. Linking landscape morphological complexity and sediment connectivity. Earth Surface Processes and Landforms 38,1457–1471.
  • Benda L., Andras K., Miller D., Bigelow P., 2004. Confluence effects in rivers: interactions between basin scale, network geometry and disturbance regimes. Water Resources Research 18, 1311–1325.
  • Bocco G., 1993. Gully initiation in Quaternary volcanic environments under temperate subhumid seasonal climates. Catena 20, 495–513.
  • Bogen J., 1980. The hysteresis effect of sediment transport systems. Norsk Geografisk Tidsskrift 34, 45–54.
  • Bogen J., Xu M., Kennie P., 2015. The impact of proglacial lakes on downstream sediment delivery in Norway. Earth Surface Processes and Landforms 40, 942–952.
  • Boggs G., Devonport C., Evans K., Puig P., 2001. GIS-based rapid assessment of erosion risk in a small catchment in the wet/dry tropics of Australia. Land Degradation and Development, 12, 417–434.
  • Bracken L.J., Croke J., 2007. The concept of hydrological connectivity and its contribution to understanding runoff-dominated geomorphic systems. Hydrological Processes 21, 1749–1763.
  • Bracken L.J., Turnbull L., Wainwright J., Bogaart P., 2015. Sediment connectivity: a framework for understanding sediment transfer at multiple scales. Earth Surface Processes and Landforms 40, 177–188.
  • Brardinoni F., Hassan M.A., 2007. Glacially induced organization of channel reach morphology in mountain streams. Journal of Geophysical Research 112 FO3013, DOI: 10.1029/2006JF000741.
  • Brunet R., 1968. Les Phénomènes de Disconuité en Géographie. Mémoires et Documents, Éditions du Centre de Recherches et Documentation Cartographiques et Géographiques, CNRS, Paris 7, 1–117.
  • Brunsden D., 1993. Barriers to geomorphological change. [in:] D.S.G. Thomas, R.J. Allison (eds.), Landscape Sensitivity. Wiley and Sons, Chichester, 7–12.
  • Cavalli M., Trevisani S., Comiti F., Marchi L., 2013. Geomorphometric assessment of spatial sediment connectivity in small alpine catchments. Geomorphology 188, 31–41.
  • Chorley R.J., 1962. Geomorphology and General Systems Theory. US Geological Survey Professional Paper 500–B, Washington, DC.
  • Chorley R.J., 1995. Classics in physical geography revisited: Horton RE, 1945. Progress in Physical Geography 19, 533–554.
  • Chorley R.J., Morgan M.A., 1962. Comparison of morphometric features, Unaka Mountains, Tennessee and North Carolina, and Dartmoor, England. Geological Society of America Bulletin 73, 17–34.
  • Church M., 2003. What is a geomorphological prediction? [in:] P.R. Wilcock, R.M. Iverson (eds.), Prediction in Geomorphology. Geophysical Monograph 135, 183–194.
  • Church M., Slaymaker O., 1989. Holocene disequilibrium of sediment yield in glaciated British Columbia. Nature 337, 452–454.
  • Church M., Slaymaker O., 2016. Signatures of sediment yield in the world’s mountains. [in:] K. Mainali, S. Sicroff (eds.), Jack D. Ives: Montologist. Festschrift for a Mountain Advocate. Himalayan Association for the Advancement of Science, Lalitpur, Nepal, 67–93.
  • Church M., Owens P., Petticrew E., Souch C., (eds.) 2006. Sediment and geochemical budgets. Geomorphology 79, 1–142.
  • Collins B.D., Montgomery D.R., 2011. The legacy of Pleistocene glaciation and the organization of lowland alluvial process domains in the Puget Sound region. Geomorphology 126, 174–185.
  • Cossart E., Fressard M., 2017. Assessment of structural sediment connectivity within catchments: insights from graph theory. Earth Surface Dynamics 5, 253–268.
  • Crutzen P.J., Stoermer E.F., 2000. The ‘anthropocene’. IGBP Global Change Newsletter 41, 17–18.
  • Dietrich W.E., Dunne T., 1978. Sediment Budget for a small catchment in mountainous terrain. Zeitschrift für Geomorphologie NF 29, 191–206.
  • Dunne T., Moore T.R., Taylor C.H., 1975. Recognition and prediction of runoff producing zones in humid regions. Water Resources Research 6, 1296–1311.
  • Flores–Diaz A.C., Hernandez R.G., Mendoza M.E., Langrave R., Quevedo A., Maass M., 2017. Hierarchical procedure for creating local typologies for riparian zone research and management based on biophysical features. Physical Geography 29, 2, 118–139, http://dx.doi.org/10.1080/02723646.2017.1387427.
  • Ford D.C., Williams P.W., 2007. Karst Hydrogeology and Geomorphology. Wiley, Chichester, UK.
  • Forman R.T.T., 1995. Land Mosaics: the Ecology of Landscapes and Regions. Cambridge University Press, Cambridge.
  • Fort M., Cossart E., Arnaud–Fassetta G., 2010. Catastrophic landslides and sedimentary budgets. [in:] I. Alcantara-Ayala, A.S. Goudie (eds.), Geomorphological Hazards and Disaster Prevention. Cambridge University Press, Cambridge, 75–95.
  • Fryirs K.A., 2013. (Dis)connectivity in catchment sediment cascades: a fresh look at the sediment delivery problem. Earth Surface Processes and Landforms 38, 30–46.
  • Fryirs K.A., Brierley G.J., Preston N.J., Kasai M., 2007. Buffers, barriers and blankets: the (dis)connectivity of catchment scale sediment cascades. Catena 70, 49–67.
  • Geilhausen M., Morche D., Otto J-C., Schrott L., 2013. Sediment discharge from the proglacial zone of a retreating alpine glacier. Zeitschrift fur Geomorphologie Supp. Band 57, 29–53.
  • Grant G.E., O’Connor J., Safran E., 2017. Excursions in fluvial (dis)continuity. Geomorphology 277, 145–153.
  • Gregory K.J., (ed.), 1977. River Channel Changes. John Wiley, Chichester.
  • Haff P.K., 2010. Hillslopes, rivers, plows and trucks: mass transport on Earth’s surface by natural and technological processes. Earth Surface Processes and Landforms 35, 1157–116.
  • Harvey A.M, 2002. Effective time scales of coupling within fluvial systems. Geomorphology 44, 175–201.
  • Hassan M., Church M., Yan Y., Slaymaker O., 2010. Spatial and temporal variation of in-reach suspended sediment dynamics along the main stem of the Changjiang River. Water Resources Research 46, W11551.
  • Heckmann T., Vericat D., 2018. Computing spatially distributed sediment delivery ratios: inferring functional sediment connectivity from repeat high-resolution digital elevation models. Earth Surface Processes and Landforms 43, 1547–1554.
  • Heckmann T., McColl D., Morche D., 2016. Retreating ice: research in proglacial areas matters. Earth Surface Processes and Landforms 41, 271–276.
  • Heckmann T., Cavalli M., Cerdan O., Foerster S., Javaux M., Lode E., Smetanova A., Vericat D., Brardinoni F., 2018. Indices of sediment connectivity: opportunities, challenges and limitations. Earth Science Reviews 187, 77–108.
  • Hewitt K., (ed.), 1983. Interpretations of Calamity from the Viewpoint of Human Ecology. Allen and Unwin, Boston, MA.
  • Hewitt K., 2006. Disturbance regime landscapes: mountain drainage systems interrupted by large rock slides. Progress in Physical Geography 30, 365–393.
  • Hjulström F., 1935. Studies on the morphological activity of rivers as illustrated by the River Fyris. University of Uppsala Geological Institute Bulletin 25, 221–527.
  • Holling C.S., 2001. Understanding the complexity of economic, ecological and social systems. Ecosystems 4, 390–405.
  • Horton R.E., 1941. An approach toward a physical interpretation of infiltration capacity. Proceedings of the Soil Society of America 5, 399–417.
  • Horton R.E., 1945. Erosional development of streams and their drainage basins: hydrophysical approach to quantitative morphology. Geological Society of America Bulletin 56, 275–370.
  • Jefferson A., Grant G.E., Rose T., 2006. Influence of volcanic history on groundwater patterns on the west slope of the Oregon High Cascades. Water Resources Research 42, W12411, doi:10.1029/2005WR004812.
  • Kennedy B.A., 1992. From Hutton to Horton: views of sequence, progression and equilibrium in geomorphology. Geomorphology 5, 231–250.
  • Kirchner J.W., Ferrier K.L., 2013. Mainly in the plain. Nature 495, 318–319.
  • Korup O., Clague J.J., Hermanns R.L., Hewitt K., Strom A.L., Weidinger J.T., 2007. Giant landslides, topography and erosion. Earth and Planetary Science Letters 261, 578–589.
  • Kovanen D.J., Slaymaker O., 2008. The morphometric and stratigraphic framework for estimates of debris flow incidence in the North Cascades foothills, Washington. Geomorphology 99. 224–245.
  • Kovanen D.J., Slaymaker O., 2015. The paraglacial geomorphology of the Fraser Lowland, southwest British Columbia and northwest Washington. Geomorphology 232, 78–93.
  • Lane S.N., Richards K.S, 1998. Linking river channel form and process: time, space and causality revisited. Earth Surface Processes and Landforms 22, 249–260.
  • Lane S.N., Reaney S.M., Heathwaite A.L., 2009. Representation of landscape hydrological connectivity using a topographically driven surface flow index. Water Resources Research 45, WO8423.
  • Lesschen J.P., Eickhout B., Rienks W., Prins A.G., Staritsky I., 2009. Greenhouse gas emissions for the EU in four future scenarios. Netherlands Environmental Assessment Agency PBL, Bilthoven, Netherlands.
  • Lisenby P., Fryirs K., 2017. Sedimentologically significant tributaries: catchment scale controls on sediment (dis)connectivity in the Lockyer Valley, Australia. Earth Surface Processes and Landforms 42, 1493–1504.
  • Lu H., Richards K.S., 2008. Sediment delivery: new approaches to modelling an old problem. [in:] S.P. Rice, A.G. Roy, B. Rhoads (eds.), River Confluences, Tributaries and the Fluvial Network. John Wiley and Sons, Chichester, UK, 337–366.
  • Miao C., 2010. Yellow River sediment. Progress in Physical Geography 34, 541–561.
  • Montgomery D.R., 2007. Process domains and the river continuum. Journal of the American Water Resources Association 35, 397–419, https://doi.org/10.1111/j.1752-1688.1999.tb03598.x.
  • Montgomery D.R., Foufoula–Georgiou E., 1993. Channel network source representation using digital elevation models. Water Resources Research 29, 3925–3934.
  • Munro R.N., Deckers J., Grove A.T., Haile M., Poesen J., Nyssen J., 2008. Soil and erosion features of the central plateau region of Tigray: learning from photo-monitoring with 30 years interval. Catena 75, 55–64.
  • Nakamura F., Swanson F.J., Wondzell S.M., 2000. Disturbance regimes of stream and riparian systems: a disturbance-cascade perspective. Hydrological Processes 14, 2849–2860.
  • Odum H.T., 1994. Ecological and General Systems: An Introduction to Systems. Ecology University of Colorado Press, Boulder, CO.
  • Poesen J., 2018. Soil erosion in the Anthropocene: Research Needs. Earth Surface Processes and Landforms 43, 64–84, https://doi.org/10.1002/esp.4250.
  • Raven E.K., Lane S.N., Bracken L.J., 2010. Understanding sediment transfer and morphological change for managing upland gravel bed rivers. Progress in Physical Geography 34, 23–45.
  • Rhoads B.L., 2006. The dynamic basis of geomorphology reconsidered. Annals of the Association of American Geographers 96, 14–30.
  • Roberts R.G., Church M., 1986. The sediment budget in severely disturbed watersheds, Queen Charlotte Ranges, British Columbia. Canadian Journal of Forest Research 16, 1092–1106.
  • Savi S., Schneuwly-Bollschweiler M., Bommer-Dens B., Stoffel M., Schlunegger F., 2013. Geomorphic coupling between hillslopes and channels in the Swiss Alps. Earth Surface Processes and Landforms 38, 959–969.
  • Schumm S.A., 1977. The Fluvial System. John Wiley, New York, USA.
  • Schumm S.A., 1994. To Interpret the Earth: Ten Ways to Be Wrong. Cambridge University Press, Cambridge, UK.
  • Schumm S.A., Lichty R.W., 1965. Time, space and causality in geomorphology. American Journal of Science 263, 110–119.
  • Slaymaker O., 2013. Mountain environment changes in the Anthropocene epoch. Opera Corcontica 50, 107–118.
  • Slaymaker O., 2020. Large arctic rivers. [in:] A. Gupta, O. Slaymaker, W.J. Junk (eds.), Introducing Large Rivers, John Wiley, Chichester, UK, 211–264.
  • Slaymaker O., Embleton-Hamann C., 2018. Advances in global mountain geomorphology. Geomorphology 308, 230–264.
  • Slaymaker O., Mulrennan M.E., Catto N., 2020. Implications of the Anthropocene epoch for geomorphology. [in:] O. Slaymaker, N. Catto (eds.), Landscapes and Landforms of Eastern Canada. Springer International Publishing, Cham, Switzerland, 583–588.
  • Slaymaker O., Clague J.J., Gilbert R., Friele P.A., Jordan P., Menounos B., Schiefer E., 2017. Lillooet-Harrison drainage basin: variable landscapes within the Coast Mountains. [in:] O. Slaymaker (ed.), Landscapes and Landforms of Western Canada. Springer International Publishing, Switzerland, 303–320.
  • Staines K.E.H., Carrivick J.L., Tweed F.S., Evans A.J., Russell A.J., Johannesson T., oberts M., 2015. A multi-dimensional analysis of proglacial landscape change at Solheimajokull, southern Iceland. Earth Surface Processes and Landforms 40, 809–822.
  • Taylor P.D., Fahrig L., Henein K., Merriam G., 1993. Connectivity is a vital element of landscape structure. Oikos 68, 571–573.
  • Turnbull L., Wainwright J., 2019. From structure to function: understanding shrub encroachment in drylands using hydrological and sediment connectivity. Ecological Indicators 98, 608–618.
  • Vanacker V., Molina A., Govers G., Poesen J., Dercon G., Deckers S., 2005. River channel response to short term human-induced change in landscape connectivity in Andean ecosystems. Geomorphology 72, 340–353.
  • Willenbring J.K., Codilean A., McElroy B.J., 2013. The Earth is mostly flat: apportionment of the flux of continental sediment over millennial time scales. Geology 41, 343–346.
  • Wischmeier W.H., Smith D.D., 1978. US Department of Agriculture Soil Conservation Service. USA. Agriculture Handbook No. 537, 285–291.
  • Wohl E., 2017. Connectivity in rivers. Progress in Physical Geography 41, 345–362.
  • Wohl E., Brierley G., Cadol D., Coulthard T.J., Covino T., Fryirs K.A., Grant G., Hilton RG., Lane S.N., Magilligan F.J., Meitzen K.M., Passalacqua P., Poeppl R.E., Rathburn S.L., Sklar L.S., 2018. Connectivity as an emergent property of geomorphic systems. Earth Surface Processes and Landforms 44, 4–26, DOI: 10.1002/esp.4434.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e590fdd3-1533-47c6-b366-3905e473e808
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.