PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Multi-objective evolutionary algorithms and some of their applications in reliability

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
15th Summer Safety & Reliability Seminars - SSARS 2021, 5-12 September 2021, Ciechocinek, Poland
Języki publikacji
EN
Abstrakty
EN
Multi-objective optimization has become increasingly important, mainly because many real-world problems are multi-objective in nature. The complexity of many of such problems has made necessary the use of metaheuristics. From them, the use of multi-objective evolutionary algorithms has become very popular mainly because of their ease of use and flexibility. In this chapter, we provide a short review of multi-objective evolutionary algorithms and some of their applications in reliability. In the final part of the chapter, some possible paths for future research in this area are also discussed.
Bibliografia
  • Ahn, G. & Hur, S. 2021. Multiobjective real-time scheduling of tasks in cloud manufacturing with genetic algorithm. Mathematical Problems in Engineering 1305849.
  • Ardakan, M.A. & Rezvan, M.T. 2018. Multi-objective optimization of reliability-redundancy allocation problem with cold-standby strategy using NSGA-II. Reliability Engineering & System Safety 172, 225-238.
  • Bader, J. & Zitzler, E. 2011. HypE: an algorithm for fast hypervolume-based many-objective optimization. Evolutionary Computation 19(1), 45-76.
  • Bandyopadhyay, S., Saha, S., Maulik, U. & Deb, K. 2008. A simulated annealing-based multiobjective optimization algorithm: AMOSA. IEEE Transactions on Evolutionary Computation 12(3), 269-283.
  • Beume, N., Fonseca, C.M., López-Ibáñez, M., Paquete, L. & Vahrenhold, J. 2009. On the complexity of computing the hypervolume indicator. IEEE Transactions on Evolutionary Computation 13(5), 1075-1082.
  • Beume, N., Naujoks, B. & Emmerich, M. 2007. SMS-EMOA: multiobjective selection based on dominated hypervolume. European Journal of Operational Research 181(3), 1653-1669.
  • Bolchini, C., Lanzi, P.L. & Miele, A. 2010. In 2010 IEEE Congress on Evolutionary Computation (CEC'2010), IEEE Press, Barcelona, 419-426.
  • Branke, J. & Deb, K. 2005. Integrating user preferences into evolutionary multi-objective optimization. Y. Jin (Ed.).Knowledge Incorporation in Evolutionary Computation, Springer, Berlin Heidelberg, 461-477.
  • Brockhoff, D., Wagner, T. & Trautmann, H. 2012. On the properties of the R2 indicator. 2012 Genetic and Evolutionary Computation Conference (GECCO'2012) 465-472.
  • Brockhoff, D., Wagner, T. & Trautmann, H. R2 Indicator-Based Multiobjective Search. 2015. Evolutionary Computation 23(3), 369-395.
  • Claudio, M., Rocco, S., Ramirez-Marquez, J.E., Daniel, E. & Salazar, A. 2009. A multiple-objective approach for the vulnerability assessment of infrastructure networks. R. Bris et al. (Eds.).Reliability, Risk, and Safety. CRC Press, London.
  • Coello Coello, C.A. 1996. An Empirical Study of Evolutionary Techniques for Multiobjective Optimization in Engineering Design, PhD thesis, Department of Computer Science, Tulane University, New Orleans.
  • Coello Coello, C.A. 2000. Treating constraints as objectives for single-objective evolutionary optimization.Engineering Optimization 32(3), 275-308.
  • Coello Coello, C.A. 2006. The EMOO repository: a resource for doing research in evolutionary multiobjective optimization. IEEE Computational Intelligence Magazine 1(1), 37-45.
  • Coello Coello, C.A., Lamont, G.B. & Van Veldhuizen, D.A. 2007. Evolutionary Algorithms for Solving Multi-Objective Problems, Springer, New York, 2ndedition.
  • Cox, W. & While, L. 2016. Improving the IWFG algorithm for calculating incremental hypervolume. 2016 IEEE Congress on Evolutionary Computation (CEC'2016), IEEE Press, Vancouver.
  • Cui, H., Li, Y., Liu, X., Ansari, N. & Yunjie, L. 2017. Cloud service reliability modelling and optimal task scheduling. IET Communications 11(2), 161-167.
  • Das, I. & Dennis, J. 1997. A closer look at drawbacks of minimizing weighted sums of objectives for Pareto set generation in multicriteria optimization problems. Structural Optimization 14(1), 63-69.
  • Das, I. & Dennis, J.E. 1998. Normal-boundary intersection: anew method for generating the Pareto surface in nonlinear multicriteria optimization problems. SIAM Journal on Optimization 8(3), 631-657.
  • Deb, K. 2001. Multi-Objective Optimization using Evolutionary Algorithms. John Wiley & Sons, Chichester.
  • Deb, K. & Jain, H. 2014. An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints. IEEE Transactions on Evolutionary Computation 18(4), 577-601.
  • Deb, K., Gupta, S., Daum, D., Branke, J., Mall, A.K. & Padmanabhan, D. 2009. Reliability-based optimization using evolutionary algorithms. IEEE Transactions on Evolutionary Computation 13(5), 1054-1074.
  • Deb, K., Jain, P., Gupta, N.K. & Maji, H.K. 2004. Multiobjective placement of electronic components using evolutionary algorithms. IEEE Transactions on Components and Packaging Technologies 27(3), 480-492.
  • Deb, K., Pratap, A., Agarwal, S. & Meyarivan, T. 2002. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6(2), 182-197.
  • Durillo, J.J., Fard, H.M. & Prodan, R. 2012. MOHEFT: A multi-objective list-based method for workflow scheduling. 4thIEEE International Conference on Cloud Computing Technology and Science Proceedings. IEEE Computer Society, Taipei, 185-192.
  • Ehrgott, M. 2005. Multicriteria Optimization. Springer, Berlin, 2ndedition.
  • Emmerich, M., Beume, N. & Naujoks, B. An EMO algorithm using the hypervolume measure as selection criterion. C.A. Coello Coello et al.(Eds.).Evolutionary Multi-Criterion Optimization. Third International Conference, EMO 2005, Springer. Lecture Notes in Computer Science 3410, 62-76.
  • Falcón-Cardona, J.G., Liefooghe, A. & Coello Coello, C.A. 2020. An ensemble indicator-based density estimator for evolutionary multi-objective optimization. T. Bäck et al.(Eds.), Parallel Problem Solving from Nature - PPSN XVI, 16thInternational Conference, PPSN 2020. Proceedings, Part II, Springer. Lecture Notes in Computer Science 12270, 201-214.
  • Filatovas, E., Lancinskas, A., Kurasova, O. & Zilinskas, J. 2017. A preference-based multi-objective evolutionary algorithm R-NSGA-II with stochastic local search. Central European Journal of Operations Research 25(4), 859-878.
  • Fleischer, M. 2003. The measure of Pareto optima. Applications to multi-objective metaheuristics. C.M. Fonseca et al.(Eds.), Evolutionary Multi-Criterion Optimization. Second International Conference, EMO 2003,Springer. Lecture Notes in Computer Science 2632, 519-533.
  • Fonseca, C.M. & Fleming, P.J. 1993. Genetic algorithms for multiobjective optimization: formulation, discussion and generalization. S. Forrest(Ed.).Proceedings of the Fifth International Conference on Genetic Algorithms, Morgan Kaufmann Publishers, San Mateo, 416-423.
  • Goldberg, D.E. 1989. Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley Publishing Company, Reading, Massachusetts.
  • Goldberg, D.E. & Richardson, J. 1987. Genetic algorithm with sharing for multimodal function optimization. J.J. Grefenstette (Ed.).Genetic Algorithms and their Applications: Proceedings of the Second International Conference on Genetic Algorithms. Lawrence Erlbaum, Hillsdale, New Jersey, 41-49.
  • Guerreiro, A.P. & Fonseca, C.M. 2018. Computing and updating hypervolume contributions in up to four dimensions. IEEE Transactions on Evolutionary Computation 22(3), 449-463.
  • Hajela, P. & Lin, C.Y. 1992. Genetic search strategies in multicriterion optimal design. Structural Optimization 4, 9-107.
  • Han, P., Du, C., Chen, J., Ling, F. & Du, X. 2021. Cost and makespan scheduling of workflows in clouds using list multiobjective optimization technique. Journal of Systems Architecture 112, 101837.
  • Hernandez Gómez, R. & Coello Coello, C.A. 2015. Improved metaheuristic based on the R2 indicator for many-objective optimization. 2015 Genetic and Evolutionary Computation Conference (GECCO 2015). ACM Press, Madrid, 679-686.
  • Hernández Gómez, R., Coello Coello, C.A. & Alba Torres, E. 2016. A multi-objective evolutionary algorithm based on parallel coordinates. 2016 Genetic and Evolutionary Computation Conference (GECCO'2016). ACM Press, Denver, 565-572.
  • Hu, J., Yu, G., Zheng, J. & Zou, J. 2017. A preference-based multi-objective evolutionary algorithm using preference selection radius. Soft Computing 21(17), 5025-5051.
  • Hwang, C.L., Tillman, F.A., Wei, W.K. & Lie, C.H. 1979. Optimal scheduled-maintenance policy based on multiple-criteria decision-making. IEEE Transactions on Reliability 28(5), 394-399.
  • Igel, C., Hansen, N. & Roth, S. 2007. Covariance matrix adaptation for multi-objective optimization. Evolutionary Computation 15(1), 1-28.
  • Inagaki, T., Inoue, K. & Akashi, H. 1978. Interactive optimization of system reliability under multiple objectives. IEEE Transactions on Reliability 27(4), 264–267.
  • Ishibuchi, H., Masuda, H., Tanigaki, Y. & Nojima, Y. 2015. Modified distance calculation in generational distance and inverted generational distance. A. Gaspar-Cunha et al.(Eds.).Evolutionary Multi-Criterion Optimization, 8thInternational Conference, EMO 2015, Springer. Lecture Notes in Computer Science 9019, 110-125.
  • Ishibuchi, H., Setoguchi, Y., Masuda, H. & Nojima, Y. 2017. Performance of decomposition-based many-objective algorithms strongly depends on Pareto front shapes. IEEE Transactions on Evolutionary Computation 21(2), 169-190.
  • Jaszkiewicz, A. 2018. Improved quick hypervolume algorithm. Computers & Operations Research 90, 72-83.
  • Kim, J.R. & Gen, M. 1999. Genetic algorithm for solving bicriteria network topology design problem. Proceedings of the 1999 Congress on Evolutionary Computation (CEC'99). IEEE Press, Washington, DC, 2272-2279.
  • Knowles, J. & Corne, D. 2003. Properties of an adaptive archiving algorithm for storing nondominated vectors. IEEE Transactions on Evolutionary Computation 7(2), 100-116.
  • Kukkonen, S. & Deb, K. 2006. Improved pruning of non-dominated solutions based on crowding distance for bi-objective optimization problems. 2006 IEEE Congress on Evolutionary Computation (CEC'2006). IEEE Press, Vancouver, BC, 1164-1171.
  • Kumar, R., Parida, P.P. & Gupta, M. 2002. Topological design of communication networks using multiobjective genetic optimization. 2002 IEEE Congress on Evolutionary Computation (CEC'2002). IEEE Press, Piscataway, 1, 425-430.
  • Kumar, R. & Rockett, P. 1998. Multiobjective genetic algorithm partitioning for hierarchical learning of high-dimensional pattern spaces: a learning-follows-decomposition strategy. IEEE Transactions on Neural Networks 9(5), 822-830.
  • Lacour, R., Klamroth, K. & Fonseca, C.M. 2017. A box decomposition algorithm to compute the hypervolume indicator. Computers & Operations Research 79, 347-360.
  • Landa Becerra, R., Santana-Quintero, L.V. & Coello Coello, C.A. 2008. Knowledge incorporation in multi-Objective evolutionary algorithms. A. Ghosh et al.(Eds.), Multi-objective Evolutionary Algorithms for Knowledge Discovery from Data Bases. Springer, Berlin, 23-46.
  • Li, F., Cheng, R., Liu, J. & Jin, Y. 2018. A two-stage R2 indicator based evolutionary algorithm for many-objective optimization. Applied Soft Computing 67, 245-260.
  • Li, M., Yang, S. & Liu, X. 2014. Shift-based density estimation for Pareto-based algorithms in many-objective optimization. IEEE Transactions on Evolutionary Computation 18(3), 348-365.
  • Liu, D. Multi-Objective Cultural Algorithms. PhD thesis, Wayne State University, Detroit, 2011.
  • Manoatl Lopez, E. & Coello Coello, C.A. 2016. IGD+-EMOA: a multi-objective evolutionary algorithm based on IGD+. 2016 IEEE Congress on Evolutionary Computation (CEC'2016). IEEE Press, Vancouver, 999-1006.
  • Manoatl Lopez, E. & Coello Coello, C.A. 2018. An improved version of a reference-based multi-objective evolutionary algorithm based on IGD+. 2018 Genetic and Evolutionary Computation Conference (GECCO'2018). ACM Press, Kyoto, 713-720.
  • Marseguerra, M., Zio, E., Podofillini, L. & Coit, D.W. 2005. Optimal design of reliable network systems in presence of uncertainty. IEEE Transactions on Reliability 54(2), 243-253.
  • Meedeniya, I., Buhnova, B., Aleti, A. & Grunske, L. 2011. Reliability-driven deployment optimization for embedded systems. Journal of Systems and Software 84(5), 835-846.
  • Menchaca-Mendez, A. & Coello Coello, C.A. 2017. An alternative hypervolume-based selection mechanism for multi-objective evolutionary algorithms. Soft Computing 21(4), 861-884.
  • Miettinen, K.M. 1999. Nonlinear Multiobjective Optimization. Kluwer Academic Publishers, Boston.
  • Phan, D.H. & Junichi, S. 2011. Boosting indicator-based selection operators for evolutionary multiobjective optimization algorithms. 2011 IEEE 23rdInternational Conference on Tools with Artificial Intelligence (ICTAI'2011), IEEE Press, Boca Raton, 276-281.
  • Pires, E.J. Solteiro, M., Tenreiro, J.A. & de Moura Oliveira, P.B. 2013. Entropy diversity in multi-objective particle swarm optimization. Entropy 15(12), 5475-5491.
  • Rachmawati, L. & Srinivasan, D. Preference incorporation in multi-objective evolutionary algorithms: a survey. 2006. 2006 IEEE Congress on Evolutionary Computation (CEC'2006). IEEE Press, Vancouver, BC, 3385-3391.
  • Rosenberg, R.S. 1967. Simulation of genetic populations with biochemical properties. PhD thesis, University of Michigan, Ann Arbor, Michigan.
  • Rudolph, G. & Agapie, A. 2000. Convergence properties of some multi-objective evolutionary algorithms. Proceedings of the 2000 Conference on Evolutionary Computation (CEC’2000). IEEE Press, Piscataway, 2, 1010-1016.
  • Russo, L.M.S. & Francisco, A.P. 2016. Extending quick hypervolume. Journal of Heuristics 22(3), 245–271.
  • Saeedi, S., Khorsand, R., Bigdoli, S.G. & Ramezanpour, M. 2020. Improved many-objective particle swarm optimization algorithm for scientific workflow scheduling in cloud computing. Computers & Industrial Engineering 147, 106649.
  • Santiago, A., Huacuja, H.J.F., Dorronsoro, B., Pecero, J.E., Santillan, C.G., Barbosa, J.J.G. & Monterrubio, J.C.S. 2014. A survey of decomposition methods for multi-objective optimization. O. Castillo et al. (Eds.).Recent Advances on Hybrid Approaches for Designing Intelligent Systems. Springer, 453-465.
  • Schaffer, J.D. 1984. Multiple Objective Optimization with Vector Evaluated Genetic Algorithms. PhD thesis, Vanderbilt University, Tennessee.
  • Schaffer, J.D. 1985. Multiple objective optimization with vector evaluated genetic algorithms. Genetic Algorithms and their Applications: Proceedings of the First International Conference on Genetic Algorithms, Lawrence Erlbaum, Hillsdale, 93-100.
  • Schaffer, J.D. & Grefenstette, J.J. 1985. Multiobjective learning via genetic algorithms. Proceedings of the 9th International Joint Conference on Artificial Intelligence (IJCAI-85). AAAI, Los Angeles, 593-595.
  • Sinha, K. 2007. Reliability-based multiobjective optimization for automotive crashworthiness and occupant safety. Structural and Multidisciplinary Optimization 33(3), 255-268.
  • Srinivas, N. & Deb, K. 1994. Multiobjective optimization using nondominated Sorting in Genetic Algorithms. Evolutionary Computation 2(3), 221-248.
  • Taboada, H.A., Espiritu, J.F. & Coit, D.W. 2008. MOMS-GA: A multi-objective multi-state genetic algorithm for system reliability optimization design problems. IEEE Transactions on Reliability 57(1), 182-191.
  • Talbi, El-Ghazali. 2009. Metaheuristics. From Design to Implementation. John Wiley & Sons, Inc., Hoboken.
  • Tian, Y., Zhang, X., Cheng, R. & Jin, Y. 2016. A multi-objective evolutionary algorithm based on an enhanced inverted generational distance metric. 2016 IEEE Congress on Evolutionary Computation (CEC'2016). IEEE Press, Vancouver, 5222-5229.
  • Zafiropoulos, E.P. & Dialynas, E.N. 2004. Reliability and cost optimization of electronic devices considering the component failure rate uncertainty. Reliability Engineering and System Safety 84(3), 271-284.
  • Zhang, C., Ramirez-Marquez, J.E. & Sanseverino, C.M. 2011. Aholistic method for reliability performance assessment and critical components detection in complex networks. IIE Transactions 43(9), 661-675.
  • Zhang, Q. & Li, H. 2007. MOEA/D: A multiobjective evolutionary algorithm based on decomposition. IEEE Transactions on Evolutionary Computation 11(6), 712-731.
  • Zitzler, E. 1999. Evolutionary Algorithms for Multiobjective Optimization: Methods and Applications. PhD thesis, Swiss Federal Institute of Technology (ETH), Zurich.
  • Zitzler, E. & Künzli, S. 2004. Indicator-based Selection in multiobjective search. Xin Yao et al. (Eds.). Parallel Problem Solving from Nature - PPSN VIII, Lecture Notes in Computer Science. Springer-Verlag. Birmingham, 3242,832-842.
  • Zitzler, E. & Thiele, L. 1999. Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Transactions on Evolutionary Computation 3(4), 257-271.
  • Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M. & Grunert da Fonseca, V. 2003. Performance assessment of multiobjective optimizers: an analysis and review. IEEE Transactions on Evolutionary Computation 7(2), 117-132.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e58a3a47-45f2-488f-9f4e-258a51a4bd78
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.