Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Konferencja
15th Summer Safety & Reliability Seminars - SSARS 2021, 5-12 September 2021, Ciechocinek, Poland
Języki publikacji
Abstrakty
Multi-objective optimization has become increasingly important, mainly because many real-world problems are multi-objective in nature. The complexity of many of such problems has made necessary the use of metaheuristics. From them, the use of multi-objective evolutionary algorithms has become very popular mainly because of their ease of use and flexibility. In this chapter, we provide a short review of multi-objective evolutionary algorithms and some of their applications in reliability. In the final part of the chapter, some possible paths for future research in this area are also discussed.
Słowa kluczowe
Rocznik
Strony
45--57
Opis fizyczny
Bibliogr. 84 poz.
Twórcy
autor
- CINVESTAV-IPN, Mexico City, Mexico
- UAM Azcapotzalco, Mexico City, Mexico
Bibliografia
- Ahn, G. & Hur, S. 2021. Multiobjective real-time scheduling of tasks in cloud manufacturing with genetic algorithm. Mathematical Problems in Engineering 1305849.
- Ardakan, M.A. & Rezvan, M.T. 2018. Multi-objective optimization of reliability-redundancy allocation problem with cold-standby strategy using NSGA-II. Reliability Engineering & System Safety 172, 225-238.
- Bader, J. & Zitzler, E. 2011. HypE: an algorithm for fast hypervolume-based many-objective optimization. Evolutionary Computation 19(1), 45-76.
- Bandyopadhyay, S., Saha, S., Maulik, U. & Deb, K. 2008. A simulated annealing-based multiobjective optimization algorithm: AMOSA. IEEE Transactions on Evolutionary Computation 12(3), 269-283.
- Beume, N., Fonseca, C.M., López-Ibáñez, M., Paquete, L. & Vahrenhold, J. 2009. On the complexity of computing the hypervolume indicator. IEEE Transactions on Evolutionary Computation 13(5), 1075-1082.
- Beume, N., Naujoks, B. & Emmerich, M. 2007. SMS-EMOA: multiobjective selection based on dominated hypervolume. European Journal of Operational Research 181(3), 1653-1669.
- Bolchini, C., Lanzi, P.L. & Miele, A. 2010. In 2010 IEEE Congress on Evolutionary Computation (CEC'2010), IEEE Press, Barcelona, 419-426.
- Branke, J. & Deb, K. 2005. Integrating user preferences into evolutionary multi-objective optimization. Y. Jin (Ed.).Knowledge Incorporation in Evolutionary Computation, Springer, Berlin Heidelberg, 461-477.
- Brockhoff, D., Wagner, T. & Trautmann, H. 2012. On the properties of the R2 indicator. 2012 Genetic and Evolutionary Computation Conference (GECCO'2012) 465-472.
- Brockhoff, D., Wagner, T. & Trautmann, H. R2 Indicator-Based Multiobjective Search. 2015. Evolutionary Computation 23(3), 369-395.
- Claudio, M., Rocco, S., Ramirez-Marquez, J.E., Daniel, E. & Salazar, A. 2009. A multiple-objective approach for the vulnerability assessment of infrastructure networks. R. Bris et al. (Eds.).Reliability, Risk, and Safety. CRC Press, London.
- Coello Coello, C.A. 1996. An Empirical Study of Evolutionary Techniques for Multiobjective Optimization in Engineering Design, PhD thesis, Department of Computer Science, Tulane University, New Orleans.
- Coello Coello, C.A. 2000. Treating constraints as objectives for single-objective evolutionary optimization.Engineering Optimization 32(3), 275-308.
- Coello Coello, C.A. 2006. The EMOO repository: a resource for doing research in evolutionary multiobjective optimization. IEEE Computational Intelligence Magazine 1(1), 37-45.
- Coello Coello, C.A., Lamont, G.B. & Van Veldhuizen, D.A. 2007. Evolutionary Algorithms for Solving Multi-Objective Problems, Springer, New York, 2ndedition.
- Cox, W. & While, L. 2016. Improving the IWFG algorithm for calculating incremental hypervolume. 2016 IEEE Congress on Evolutionary Computation (CEC'2016), IEEE Press, Vancouver.
- Cui, H., Li, Y., Liu, X., Ansari, N. & Yunjie, L. 2017. Cloud service reliability modelling and optimal task scheduling. IET Communications 11(2), 161-167.
- Das, I. & Dennis, J. 1997. A closer look at drawbacks of minimizing weighted sums of objectives for Pareto set generation in multicriteria optimization problems. Structural Optimization 14(1), 63-69.
- Das, I. & Dennis, J.E. 1998. Normal-boundary intersection: anew method for generating the Pareto surface in nonlinear multicriteria optimization problems. SIAM Journal on Optimization 8(3), 631-657.
- Deb, K. 2001. Multi-Objective Optimization using Evolutionary Algorithms. John Wiley & Sons, Chichester.
- Deb, K. & Jain, H. 2014. An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints. IEEE Transactions on Evolutionary Computation 18(4), 577-601.
- Deb, K., Gupta, S., Daum, D., Branke, J., Mall, A.K. & Padmanabhan, D. 2009. Reliability-based optimization using evolutionary algorithms. IEEE Transactions on Evolutionary Computation 13(5), 1054-1074.
- Deb, K., Jain, P., Gupta, N.K. & Maji, H.K. 2004. Multiobjective placement of electronic components using evolutionary algorithms. IEEE Transactions on Components and Packaging Technologies 27(3), 480-492.
- Deb, K., Pratap, A., Agarwal, S. & Meyarivan, T. 2002. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6(2), 182-197.
- Durillo, J.J., Fard, H.M. & Prodan, R. 2012. MOHEFT: A multi-objective list-based method for workflow scheduling. 4thIEEE International Conference on Cloud Computing Technology and Science Proceedings. IEEE Computer Society, Taipei, 185-192.
- Ehrgott, M. 2005. Multicriteria Optimization. Springer, Berlin, 2ndedition.
- Emmerich, M., Beume, N. & Naujoks, B. An EMO algorithm using the hypervolume measure as selection criterion. C.A. Coello Coello et al.(Eds.).Evolutionary Multi-Criterion Optimization. Third International Conference, EMO 2005, Springer. Lecture Notes in Computer Science 3410, 62-76.
- Falcón-Cardona, J.G., Liefooghe, A. & Coello Coello, C.A. 2020. An ensemble indicator-based density estimator for evolutionary multi-objective optimization. T. Bäck et al.(Eds.), Parallel Problem Solving from Nature - PPSN XVI, 16thInternational Conference, PPSN 2020. Proceedings, Part II, Springer. Lecture Notes in Computer Science 12270, 201-214.
- Filatovas, E., Lancinskas, A., Kurasova, O. & Zilinskas, J. 2017. A preference-based multi-objective evolutionary algorithm R-NSGA-II with stochastic local search. Central European Journal of Operations Research 25(4), 859-878.
- Fleischer, M. 2003. The measure of Pareto optima. Applications to multi-objective metaheuristics. C.M. Fonseca et al.(Eds.), Evolutionary Multi-Criterion Optimization. Second International Conference, EMO 2003,Springer. Lecture Notes in Computer Science 2632, 519-533.
- Fonseca, C.M. & Fleming, P.J. 1993. Genetic algorithms for multiobjective optimization: formulation, discussion and generalization. S. Forrest(Ed.).Proceedings of the Fifth International Conference on Genetic Algorithms, Morgan Kaufmann Publishers, San Mateo, 416-423.
- Goldberg, D.E. 1989. Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley Publishing Company, Reading, Massachusetts.
- Goldberg, D.E. & Richardson, J. 1987. Genetic algorithm with sharing for multimodal function optimization. J.J. Grefenstette (Ed.).Genetic Algorithms and their Applications: Proceedings of the Second International Conference on Genetic Algorithms. Lawrence Erlbaum, Hillsdale, New Jersey, 41-49.
- Guerreiro, A.P. & Fonseca, C.M. 2018. Computing and updating hypervolume contributions in up to four dimensions. IEEE Transactions on Evolutionary Computation 22(3), 449-463.
- Hajela, P. & Lin, C.Y. 1992. Genetic search strategies in multicriterion optimal design. Structural Optimization 4, 9-107.
- Han, P., Du, C., Chen, J., Ling, F. & Du, X. 2021. Cost and makespan scheduling of workflows in clouds using list multiobjective optimization technique. Journal of Systems Architecture 112, 101837.
- Hernandez Gómez, R. & Coello Coello, C.A. 2015. Improved metaheuristic based on the R2 indicator for many-objective optimization. 2015 Genetic and Evolutionary Computation Conference (GECCO 2015). ACM Press, Madrid, 679-686.
- Hernández Gómez, R., Coello Coello, C.A. & Alba Torres, E. 2016. A multi-objective evolutionary algorithm based on parallel coordinates. 2016 Genetic and Evolutionary Computation Conference (GECCO'2016). ACM Press, Denver, 565-572.
- Hu, J., Yu, G., Zheng, J. & Zou, J. 2017. A preference-based multi-objective evolutionary algorithm using preference selection radius. Soft Computing 21(17), 5025-5051.
- Hwang, C.L., Tillman, F.A., Wei, W.K. & Lie, C.H. 1979. Optimal scheduled-maintenance policy based on multiple-criteria decision-making. IEEE Transactions on Reliability 28(5), 394-399.
- Igel, C., Hansen, N. & Roth, S. 2007. Covariance matrix adaptation for multi-objective optimization. Evolutionary Computation 15(1), 1-28.
- Inagaki, T., Inoue, K. & Akashi, H. 1978. Interactive optimization of system reliability under multiple objectives. IEEE Transactions on Reliability 27(4), 264–267.
- Ishibuchi, H., Masuda, H., Tanigaki, Y. & Nojima, Y. 2015. Modified distance calculation in generational distance and inverted generational distance. A. Gaspar-Cunha et al.(Eds.).Evolutionary Multi-Criterion Optimization, 8thInternational Conference, EMO 2015, Springer. Lecture Notes in Computer Science 9019, 110-125.
- Ishibuchi, H., Setoguchi, Y., Masuda, H. & Nojima, Y. 2017. Performance of decomposition-based many-objective algorithms strongly depends on Pareto front shapes. IEEE Transactions on Evolutionary Computation 21(2), 169-190.
- Jaszkiewicz, A. 2018. Improved quick hypervolume algorithm. Computers & Operations Research 90, 72-83.
- Kim, J.R. & Gen, M. 1999. Genetic algorithm for solving bicriteria network topology design problem. Proceedings of the 1999 Congress on Evolutionary Computation (CEC'99). IEEE Press, Washington, DC, 2272-2279.
- Knowles, J. & Corne, D. 2003. Properties of an adaptive archiving algorithm for storing nondominated vectors. IEEE Transactions on Evolutionary Computation 7(2), 100-116.
- Kukkonen, S. & Deb, K. 2006. Improved pruning of non-dominated solutions based on crowding distance for bi-objective optimization problems. 2006 IEEE Congress on Evolutionary Computation (CEC'2006). IEEE Press, Vancouver, BC, 1164-1171.
- Kumar, R., Parida, P.P. & Gupta, M. 2002. Topological design of communication networks using multiobjective genetic optimization. 2002 IEEE Congress on Evolutionary Computation (CEC'2002). IEEE Press, Piscataway, 1, 425-430.
- Kumar, R. & Rockett, P. 1998. Multiobjective genetic algorithm partitioning for hierarchical learning of high-dimensional pattern spaces: a learning-follows-decomposition strategy. IEEE Transactions on Neural Networks 9(5), 822-830.
- Lacour, R., Klamroth, K. & Fonseca, C.M. 2017. A box decomposition algorithm to compute the hypervolume indicator. Computers & Operations Research 79, 347-360.
- Landa Becerra, R., Santana-Quintero, L.V. & Coello Coello, C.A. 2008. Knowledge incorporation in multi-Objective evolutionary algorithms. A. Ghosh et al.(Eds.), Multi-objective Evolutionary Algorithms for Knowledge Discovery from Data Bases. Springer, Berlin, 23-46.
- Li, F., Cheng, R., Liu, J. & Jin, Y. 2018. A two-stage R2 indicator based evolutionary algorithm for many-objective optimization. Applied Soft Computing 67, 245-260.
- Li, M., Yang, S. & Liu, X. 2014. Shift-based density estimation for Pareto-based algorithms in many-objective optimization. IEEE Transactions on Evolutionary Computation 18(3), 348-365.
- Liu, D. Multi-Objective Cultural Algorithms. PhD thesis, Wayne State University, Detroit, 2011.
- Manoatl Lopez, E. & Coello Coello, C.A. 2016. IGD+-EMOA: a multi-objective evolutionary algorithm based on IGD+. 2016 IEEE Congress on Evolutionary Computation (CEC'2016). IEEE Press, Vancouver, 999-1006.
- Manoatl Lopez, E. & Coello Coello, C.A. 2018. An improved version of a reference-based multi-objective evolutionary algorithm based on IGD+. 2018 Genetic and Evolutionary Computation Conference (GECCO'2018). ACM Press, Kyoto, 713-720.
- Marseguerra, M., Zio, E., Podofillini, L. & Coit, D.W. 2005. Optimal design of reliable network systems in presence of uncertainty. IEEE Transactions on Reliability 54(2), 243-253.
- Meedeniya, I., Buhnova, B., Aleti, A. & Grunske, L. 2011. Reliability-driven deployment optimization for embedded systems. Journal of Systems and Software 84(5), 835-846.
- Menchaca-Mendez, A. & Coello Coello, C.A. 2017. An alternative hypervolume-based selection mechanism for multi-objective evolutionary algorithms. Soft Computing 21(4), 861-884.
- Miettinen, K.M. 1999. Nonlinear Multiobjective Optimization. Kluwer Academic Publishers, Boston.
- Phan, D.H. & Junichi, S. 2011. Boosting indicator-based selection operators for evolutionary multiobjective optimization algorithms. 2011 IEEE 23rdInternational Conference on Tools with Artificial Intelligence (ICTAI'2011), IEEE Press, Boca Raton, 276-281.
- Pires, E.J. Solteiro, M., Tenreiro, J.A. & de Moura Oliveira, P.B. 2013. Entropy diversity in multi-objective particle swarm optimization. Entropy 15(12), 5475-5491.
- Rachmawati, L. & Srinivasan, D. Preference incorporation in multi-objective evolutionary algorithms: a survey. 2006. 2006 IEEE Congress on Evolutionary Computation (CEC'2006). IEEE Press, Vancouver, BC, 3385-3391.
- Rosenberg, R.S. 1967. Simulation of genetic populations with biochemical properties. PhD thesis, University of Michigan, Ann Arbor, Michigan.
- Rudolph, G. & Agapie, A. 2000. Convergence properties of some multi-objective evolutionary algorithms. Proceedings of the 2000 Conference on Evolutionary Computation (CEC’2000). IEEE Press, Piscataway, 2, 1010-1016.
- Russo, L.M.S. & Francisco, A.P. 2016. Extending quick hypervolume. Journal of Heuristics 22(3), 245–271.
- Saeedi, S., Khorsand, R., Bigdoli, S.G. & Ramezanpour, M. 2020. Improved many-objective particle swarm optimization algorithm for scientific workflow scheduling in cloud computing. Computers & Industrial Engineering 147, 106649.
- Santiago, A., Huacuja, H.J.F., Dorronsoro, B., Pecero, J.E., Santillan, C.G., Barbosa, J.J.G. & Monterrubio, J.C.S. 2014. A survey of decomposition methods for multi-objective optimization. O. Castillo et al. (Eds.).Recent Advances on Hybrid Approaches for Designing Intelligent Systems. Springer, 453-465.
- Schaffer, J.D. 1984. Multiple Objective Optimization with Vector Evaluated Genetic Algorithms. PhD thesis, Vanderbilt University, Tennessee.
- Schaffer, J.D. 1985. Multiple objective optimization with vector evaluated genetic algorithms. Genetic Algorithms and their Applications: Proceedings of the First International Conference on Genetic Algorithms, Lawrence Erlbaum, Hillsdale, 93-100.
- Schaffer, J.D. & Grefenstette, J.J. 1985. Multiobjective learning via genetic algorithms. Proceedings of the 9th International Joint Conference on Artificial Intelligence (IJCAI-85). AAAI, Los Angeles, 593-595.
- Sinha, K. 2007. Reliability-based multiobjective optimization for automotive crashworthiness and occupant safety. Structural and Multidisciplinary Optimization 33(3), 255-268.
- Srinivas, N. & Deb, K. 1994. Multiobjective optimization using nondominated Sorting in Genetic Algorithms. Evolutionary Computation 2(3), 221-248.
- Taboada, H.A., Espiritu, J.F. & Coit, D.W. 2008. MOMS-GA: A multi-objective multi-state genetic algorithm for system reliability optimization design problems. IEEE Transactions on Reliability 57(1), 182-191.
- Talbi, El-Ghazali. 2009. Metaheuristics. From Design to Implementation. John Wiley & Sons, Inc., Hoboken.
- Tian, Y., Zhang, X., Cheng, R. & Jin, Y. 2016. A multi-objective evolutionary algorithm based on an enhanced inverted generational distance metric. 2016 IEEE Congress on Evolutionary Computation (CEC'2016). IEEE Press, Vancouver, 5222-5229.
- Zafiropoulos, E.P. & Dialynas, E.N. 2004. Reliability and cost optimization of electronic devices considering the component failure rate uncertainty. Reliability Engineering and System Safety 84(3), 271-284.
- Zhang, C., Ramirez-Marquez, J.E. & Sanseverino, C.M. 2011. Aholistic method for reliability performance assessment and critical components detection in complex networks. IIE Transactions 43(9), 661-675.
- Zhang, Q. & Li, H. 2007. MOEA/D: A multiobjective evolutionary algorithm based on decomposition. IEEE Transactions on Evolutionary Computation 11(6), 712-731.
- Zitzler, E. 1999. Evolutionary Algorithms for Multiobjective Optimization: Methods and Applications. PhD thesis, Swiss Federal Institute of Technology (ETH), Zurich.
- Zitzler, E. & Künzli, S. 2004. Indicator-based Selection in multiobjective search. Xin Yao et al. (Eds.). Parallel Problem Solving from Nature - PPSN VIII, Lecture Notes in Computer Science. Springer-Verlag. Birmingham, 3242,832-842.
- Zitzler, E. & Thiele, L. 1999. Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Transactions on Evolutionary Computation 3(4), 257-271.
- Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M. & Grunert da Fonseca, V. 2003. Performance assessment of multiobjective optimizers: an analysis and review. IEEE Transactions on Evolutionary Computation 7(2), 117-132.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e58a3a47-45f2-488f-9f4e-258a51a4bd78