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Abstract  
 

Multi-objective optimization has become increasingly important, mainly because many real-world prob-
lems are multi-objective in nature. The complexity of many of such problems has made necessary the 
use of metaheuristics. From them, the use of multi-objective evolutionary algorithms has become very 
popular mainly because of their ease of use and flexibility. In this chapter, we provide a short review of 
multi-objective evolutionary algorithms and some of their applications in reliability. In the final part of 
the chapter, some possible paths for future research in this area are also discussed. 
 
1. Introduction  
 

In many different disciplines, it is necessary to 
tackle problems having two or more (often con-
flicting) objectives at the same time. Such prob-
lems are called multi-objective, and their solution 
implies finding the best possible trade-offs among 
the objectives.  
For several years, a wide variety of mathematical 
programming techniques were developed to deal 
with multi-objective optimization problems (Ehr-
gott, 2005; Miettinen, 1999). However, their lim-
itations (e.g., most of these techniques can only 
generate a single solution at a time and have a lim-
ited applicability) motivated the development of 
alternative approaches from which multi-objec-
tive evolutionary algorithms have become a pop-
ular choice (Coello Coello et al., 2007; Deb, 
2001).  
Evolutionary algorithms (EAs) are a metaheuris-
tic (Talbi, 2009) inspired on the “survival of the 
fittest” principle from Darwin's evolutionary the-
ory (Goldberg, 1989). EAs have become very 
popular as multi-objective optimizers because of 

their ease of use (and implementation) and flexi-
bility (e.g., EAs are less sensitive than mathemat-
ical programming techniques to the initial search 
points and to the shape and continuity of the Pa-
reto front). Additionally, the fact that EAs are 
population-based techniques makes it possible to 
manage, simultaneously, a set of solutions, in-
stead of one at a time, as normally happens with 
mathematical programming techniques.  
The first Multi-Objective Evolutionary Algorithm 
(MOEA) was called Vector Evaluated Genetic Al-
gorithm (VEGA) and was proposed by J. David 
Schaffer in the mid-1980s (Schaffer, 1984; Schaf-
fer, 1985; Schaffer & Grefenstette, 1985). Some-
thing interesting is that there was not much inter-
est in evolutionary multi-objective optimization 
(EMOO) research for almost a decade. However, 
in the mid-1990s, this area started to attract a lot 
of attention from several research groups around 
the world, and has maintained a high research ac-
tivity since then. The first author maintains the 
EMOO repository (Coello Coello, 2006) which 
currently contains over 12,600 bibliography refer-
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ences on evolutionary multi-objective optimiza-
tion. The EMOO repository is located at: 
https://emoo.cs.cinvestav.mx.  
The remainder of this chapter is organized as fol-
lows. In Section 2, we provide some basic multi-
objective optimization concepts required to make 
this chapter self-contained. Section 3 contains a 
short review of MOEAs from a historical perspec-
tive. Section 4 contains a short review of some 
representative applications of MOEAs in reliabil-
ity. Section 5 indicates some potential paths for 
future research in this area. Finally, conclusions 
are provided in Section 6. 
 
2. Basic concepts  
 

In multi-objective optimization, the aim is to solve 
problems of the type (without loss of generality, 
we will assume only minimization problems): 
           ⃗( ⃗) ∶=  [  ( ⃗),  ( ⃗), . . . ,  ( ⃗)] (1) 
 
Subject to: 
   ( ⃗) ≤ 0,  = 1,2, . . . , , (2) 
 ℎ ( ⃗) =  0,  = 1,2, . . . , , (3) 

 
where  ⃗ = [  ,   , . . . ,   ]  is the vector of deci-
sion variables,   ∶  ℝ → ℝ,  = 1, . . . ,  are the 
objective functions and   ,ℎ : ℝ → ℝ,   = 1, . . . , ,  = 1, . . . ,  are the constraint func-
tions of the problem. 
A few additional definitions are required to intro-
duce the notion of optimality used in multi-objec-
tive optimization. 
Definition 1. Given two vectors  ⃗,  ⃗  ∈  ℝ , we 
say that  ⃗  ≤   ⃗ if    ≤     for  = 1, . . . , , and 
that  ⃗ dominates  ⃗ (denoted by  ⃗  ≺   ⃗) if  ⃗ ≤  ⃗ 
and  ⃗ ≠  ⃗. 
Definition 2. We say that a vector of decision var-
iables  ⃗ ∈ Χ ⊂  ℝ  is nondominated with respect 
to Χ, if there does not exist another  ⃗ ∈ Χ such that  ⃗( ⃗)  ≺   ⃗( ⃗). 
Definition 3. We say that a vector of decision var-
iables  ⃗ ∈ ℱ ⊂ ℝ  (ℱ is the feasible region) is 
Pareto optimal if it is nondominated with respect 
to ℱ. 
Definition 4. The Pareto Optimal Set  ∗ is defined 
by: 
 

 ∗  =  { ⃗ ∈ ℱ| ⃗  is Pareto optimal}. 
 
Definition 5. The Pareto Front   ∗ is defined by: 
   ∗  =    ⃗( ⃗) ∈ ℝ   ⃗ ∈  ∗ . 
 
Therefore, our aim is is to obtain the Pareto opti-
mal set from the set ℱ of all the decision variable 
vectors that satisfy eqs. (1) and (2). Note however 
that in practice, not all the Pareto optimal set is 
normally desirable or achievable, and decision 
makers tend to prefer certain types of solutions or 
regions of the Pareto front (Branke & Deb, 2005). 
 
3. Review of multi-objective evolutionary  

algorithms 
 

Although the first reference on the use of EAs for 
solving multi-objective problems dates back to 
the late 1960s (Rosenberg, 1967), the first actual 
implementation was developed in the mid-1980s 
(Schaffer, 1984; Schaffer, 1985). Next, we will 
provide a historical review of MOEAs and some 
additional mechanisms that have been incorpo-
rated into them over the years. 
 
3.1. Early days 
 

In their origins, MOEAs were very simple and na-
ive. A good example of this is the Vector Evalu-
ated Genetic Algorithm (VEGA), (Schaffer, 
1985) in which the population of a simple genetic 
algorithm was subdivided into as many sub-popu-
lations as the number of objectives of the multi-
objective optimization problem (MOP) to be 
solved (only problems with two objectives were 
normally considered at that time). Then, solutions 
in each subpopulation were selected based on 
their performance on a single objective (i.e., in the 
first subpopulation, individuals were selected 
based on their performance on the first objective 
and in the second subpopulation, individuals were 
selected based on their performance on the second 
objective). Then, the individuals of all the subpop-
ulations were shuffled with the aim of recombin-
ing solutions that were the best in the first objec-
tive with those that were the best in the second ob-
jective. When combined with proportional selec-
tion, e.g., the roulette-wheel method (Goldberg, 
1989), VEGA produced solutions similar to those 
obtained with the use of a linear aggregating func-
tion that combines all the objective functions into 
a single scalar value (Coello Coello, 1996). In 
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spite of the limitations of VEGA, some research-
ers eventually found applications in which this 
sort of scheme could be useful, see for example 
(Coello Coello, 2000). 
Linear aggregating functions were among the 
most popular approaches adopted in the early days 
of MOEAs (Hajela & Lin, 1992), but their inca-
pability for dealing with non-convex Pareto fronts 
was soon pointed out by some researchers, see for 
example (Das & Dennis, 1997). Nevertheless, lin-
ear aggregating functions and other naive ap-
proaches, such as lexicographic ordering have 
survived in the EMO literature for many years 
(Coello Coello et al., 2007).  
 
3.2. Pareto-based MOEAs 
 

Goldberg proposed in his seminal book on genetic 
algorithms (Goldberg, 1989) a mechanism called 
Pareto ranking for the selection scheme of a 
MOEA. The core idea of Pareto ranking is to rank 
the population of an evolutionary algorithm based 
on Pareto optimality, such that the nondominated 
solutions obtain the highest (best) possible rank 
and are sampled at the same rate (i.e., all nondom-
inated solutions have the same probability of sur-
vival). Since Goldberg did not provide a specific 
algorithm for Pareto ranking, several implementa-
tions were developed based on his proposal. From 
them, the two main ones were those provided in 
the Multi-Objective Genetic Algorithm (MOGA) 
of Fonseca and Fleming (Fonseca & Fleming, 
1993) and the Nondominated Sorting Genetic Al-
gorithm (NSGA) of Srinivas and Deb (Srinivas & 
Deb, 1994). In the first (MOGA), the ranking was 
done in a single pass (by comparing each individ-
ual with respect to everybody else, in terms of Pa-
reto optimality), whereas the second required the 
creation of several layers of solutions, which in-
volved re-ranking the population several times 
(i.e., NSGA was more computationally expensive 
than MOGA). 
Goldberg (Goldberg, 1989) realized that in 
MOEAs, diversity would be a key issue if we 
aimed to generate as many elements of the Pareto 
optimal set as possible in a single algorithmic ex-
ecution. This gave rise to the use of a mechanism 
that was eventually called density estimator, 
whose task is to maintain different (nondomi-
nated) solutions in the population, thus avoiding 
convergence to a single solution (something that 

eventually happens with any evolutionary algo-
rithm if it is allowed to run for too many genera-
tions, because of stochastic noise (Goldberg, 
1989). MOGA (Fonseca & Fleming, 1993) and 
NSGA (Srinivas & Deb, 1994) used fitness shar-
ing (Goldberg & Richardson, 1987) as their den-
sity estimator, but a wide variety of other ap-
proaches have been proposed since then: cluster-
ing (Zitzler & Thiele, 1999), adaptive grids 
(Knowles & Corne, 2003), crowding (Deb et al., 
2002), entropy (Pires et al., 2013) and parallel co-
ordinates (Hernández Gómez et al., 2016), among 
others. 
In the late 1990s, another mechanism was incor-
porated into MOEAs: elitism. The idea of elitism 
is to retain the best solutions obtained by a MOEA 
so that they are not destroyed by the evolutionary 
operators (i.e., crossover and mutation). However, 
since all nondominated solutions are considered 
equally good (unless we have some preference in-
formation), this leads to the generation of a large 
number of solutions. Zitzler realized this when de-
veloping the Strength Pareto Evolutionary Algo-
rithm (SPEA), (Zitzler & Thiele, 1999) and also 
observed that retaining such a large number of so-
lutions diluted the selection pressure. Thus, he 
proposed not only to use an external archive to 
store the nondominated solutions generated by his 
MOEA, but also proposed to prune such an ar-
chive once a certain (user-defined) limit was 
reached. For this sake, he adopted clustering. Elit-
ism is important not only for practical reasons (it 
is easier to compare the performance of two 
MOEAs that produce the same number of non-
dominated solutions), but also for theoretical rea-
sons, since it has been proved that such a mecha-
nism is required in a MOEA to guarantee conver-
gence (Rudolph & Agapie, 2000). Pareto-based 
MOEAs were very popular in the mid-1990s, but 
few of the many approaches that were proposed at 
that time have been actually used by other re-
searchers. With no doubt, the most popular of the 
Pareto-based MOEAs has been the Nondominated 
Sorting Genetic Algorithm-II (NSGA-II), (Deb et 
al., 2002) which uses a more efficient ranking 
scheme (called nondominated sorting) than its 
predecessor (NSGA), and adopts a clever mecha-
nism called crowded comparison operator (which 
does not require any parameters), as its density es-
timator. NSGA-II is still used today by many re-
searchers, in spite of the well-known limitations 
of its crowded comparison operator when dealing 
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with MOPs having more than three objectives (the 
so-called many-objective optimization problems 
(Coello Coello et al., 2007). In fact, there is em-
pirical evidence indicating that the crowded com-
parison operator has difficulties even in MOPs 
with only 3 objectives, see for example (Kukko-
nen & Deb, 2006). 
 
3.3. Indicator-based MOEAs 
 

For over 10 years, Pareto-based MOEAs were, by 
far, the most popular approaches in the specialized 
literature. In 2004, a different type of algorithmic 
design was proposed, although it remained under-
developed for several years: indicator-based se-
lection. The core idea of this sort of MOEA was 
introduced in the Indicator-Based Evolutionary 
Algorithm (IBEA), (Zitzler & Künzli, 2004) 
which consists of an algorithmic framework that 
allows the incorporation of any performance indi-
cator into the selection mechanism of a MOEA. 
IBEA was originally tested with the hypervolume 
(Zitzler, 1999) and the binary   indicator (Zitzler 
& Künzli, 2004).  
Indicator-based MOEAs were initially seen as a 
curiosity in the field, since it was not clear what 
were their advantages other than providing an al-
ternative mechanism for selecting solutions. 
However, when the limitations of Pareto-based 
selection for dealing with many-objective prob-
lems became clear, researchers started to get in-
terested in indicator-based MOEAs, which did not 
seem to have scalability limitations. Much of the 
interest in this area was produced by the introduc-
tion of the S Metric Selection Evolutionary Mul-
tiobjective Algorithm (SMS-EMOA) in 2005 
(Emmerich et al., 2005). SMS-EMOA randomly 
generates an initial population and then produces 
a single solution per iteration (i.e., it uses steady 
state selection) adopting the crossover and muta-
tion operators from NSGA-II. Then, it applies 
nondominated sorting (as in NSGA-II). When the 
last nondominated front has more than one solu-
tion, SMS-EMOA uses hypervolume (Zitzler, 
1999) to decide which solution should be re-
moved. In other words, SMS-EMOA is a steady 
state version of NSGA-II in which the hypervol-
ume replaces the crowded comparison operator. 
Beume et al. (Beume et al., 2007) proposed a new 
version of SMS-EMOA in which the hypervol-
ume contribution is not used when, in the non-
dominated sorting process, we obtain more than 

one front (clearly, the hypervolume is used as a 
density estimator). In this case, they use the num-
ber of solutions that dominate to a certain individ-
ual (i.e., the solution that is dominated by the larg-
est number of solutions is removed). This version 
of SMS-EMOA is more efficient. However, since 
this MOEA relies on the use of exact hypervolume 
contributions, it eventually becomes too computa-
tionally expensive as we increase the number of 
objectives (Beume et al., 2009). 
SMS-EMOA started a trend for designing indica-
tor-based MOEAs (several of which rely on the 
hypervolume indicator) although it is worth indi-
cating that in such approaches, the performance 
indicator has been mostly used as a density esti-
mator, see for example (Igel et al., 2007). The use 
of “pure” indicator-based selection mechanisms 
has been very rare in the specialized literature, see 
for example (Menchaca-Mendez & Coello 
Coello, 2017).  
At this point, an obvious question is: why is that 
the hypervolume is such an attractive choice for 
indicator-based selection? The hypervolume 
(which is also known as the   metric or the Lebes-
gue Measure) of a set of solutions measures the 
size of the portion of objective space that is dom-
inated by those solutions collectively. One of its 
main advantages are its mathematical properties, 
since it has been proved that the maximization of 
this performance measure is equivalent to finding 
the Pareto optimal set (Fleischer, 2003). Addition-
ally, empirical studies have shown that (for a cer-
tain number of points previously determined) 
maximizing the hypervolume indeed produces 
subsets of the true Pareto front (Knowles & 
Corne, 2003; Emmerich et al., 2005). 
Additionally, the hypervolume assesses both con-
vergence and, to a certain extent, also the spread 
of solutions along the Pareto front (although with-
out necessarily enforcing a uniform distribution of 
solutions). However, there are several issues re-
garding the use of the hypervolume. First, the 
computation of this performance indicator de-
pends of a reference point, which can influence 
the results in a significant manner. Some people 
have proposed to use the worst objective function 
values in the current population, but this requires 
scaling of the objectives. Nevertheless, the most 
serious limitation of the hypervolume is its high 
computational cost. The best algorithms known to 
compute hypervolume have a polynomial com-
plexity on the number of points used, but such 
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complexity grows exponentially on the number of 
objectives (Beume et al., 2009). This has triggered 
a significant amount of research regarding algo-
rithms that can reduce the computational cost of 
computing the hypervolume and the hypervolume 
contributions, which is what we need for a hyper-
volume-based MOEA, see for example (Russo & 
Francisco, 2016; Cox & Whiley, 2016; Lacour et 
al., 2017; Jaszkiewicz, 2018; Guerreiro & Fon-
seca, 2018).  
An obvious alternative to deal with this issue is to 
approximate the actual hypervolume contribu-
tions. This is the approach adopted by the Hyper-
volume Estimation Algorithm for Multi-Objec-
tive Optimization (HyPE), (Bader & Zitzler, 
2011) in which Monte Carlo simulations were 
used to approximate exact hypervolume values. In 
spite of the fact that HyPE can efficiently solve 
MOPs having a very large number of objectives, 
its results are not as competitive as when using ex-
act hypervolume contributions. 
Another possibility is to use a different perfor-
mance indicator whose computation is relatively 
inexpensive. Unfortunately, the hypervolume is 
the only unary indicator which is known to be Pa-
reto compliant (Zitzler et al., 2003), which makes 
less attractive the use of other performance indi-
cators. Nevertheless, there are some other perfor-
mance indicators which are weakly Pareto com-
pliant, such as R2 (Brockhoff et al., 2012) and the 
Inverted Generational Distance plus (IGD+) 
(Ishibuchi et al., 2015). Although several efficient 
and effective indicator-based MOEAs have been 
proposed around these performance indicators, 
see for example (Hernandez Gomez & Coello 
Coello, 2015; Brockhoff et al., 2015; Li et al., 
2018; Manoatl Lopez & Coello Coello, 2016; 
Tian et al., 2016; Manoatl Lopez & Coello Coello, 
2018), their use has remained relatively rare in the 
specialized literature. 
More recently, some researchers have proposed 
mechanisms that combine different performance 
indicators (e.g., using ensembles) with the aim of 
providing more robust indicator-based MOEAs, 
see for example (Phan & Junichi, 2011; Falcón-
Cardona et al., 2020). 
 
3.4. Decomposition-based MOEAs 
 

In 2007, a different sort of approach was pro-
posed, quickly attracting a lot of interest: the 
Multi-Objective Evolutionary Algorithm based 

on Decomposition (MOEA/D), (Zhang & Li, 
2007). The idea of using decomposition (or sca-
larization) methods was originally proposed in 
mathematical programming more than 20 years 
ago (Das & Dennis, 1998) and it consists in trans-
forming an MOP into several single-objective op-
timization problems which are then solved to gen-
erate the nondominated solutions of the original 
problem. Unlike linear aggregating functions, the 
use of scalarization (or decomposition) methods 
allows the generation of non-convex portions of 
the Pareto front and works even in disconnected 
Pareto fronts. MOEA/D presents an important ad-
vantage with respect to methods proposed in the 
mathematical programming literature (such as 
Normal Boundary Intersection (NBI), (Das & 
Dennis, 1998): it uses neighborhood search to 
solve simultaneously all the single-objective opti-
mization problems generated from the transfor-
mation. Additionally, MOEA/D is not only effec-
tive and efficient, but can also be used for solving 
problems with more than 3 objectives although in 
such cases it will require higher population sizes. 
Decomposition-based MOEAs became fashiona-
ble at around 2010 and have remained as an active 
research area since then (Santiago et al., 2014). In 
fact, this sort of approach influenced the develop-
ment of the Nondominated Sorting Genetic Algo-
rithm-III (NSGA-III), (Deb & Jain, 2014) which 
adopts both decomposition and reference points to 
deal with many-objective problems. However, it 
was recently found that decomposition-based 
MOEAs do not work properly with certain Pareto 
front geometries (Ishibuchi et al., 2017). This will 
certainly trigger a lot of research in the next few 
years, given the popularity of decomposition-
based MOEAs. 
 
4. Applications of MOEAs in reliability 
 

A wide variety of system design and reliability op-
timization problems involve the incorporation of 
several conflicting objectives (e.g. cost, reliability 
and performance, among others). In fact, the use 
of multi-objective optimization in the design of 
reliability systems has been reported in the litera-
ture since the late 1970s, see for example (Inagaki 
et al., 1978; Hwang et al., 1979). However, the use 
of MOEAs in the design of reliability systems is 
much more recent. Next, we will briefly review 
some of the many applications reported in the spe-
cialized literature. 
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4.1. Network reliability 
 

Kim and Gen (Kim & Gen, 1999) adopted a ge-
netic algorithm to solve bi-objective network to-
pology design problems of wide-band communi-
cation networks connected with fiber optic cable, 
considering network reliability. In this case, delay 
and cost are also the objectives considered by the 
authors, and a weighted linear aggregating func-
tion is adopted in combination with an evolution-
ary algorithm.  
Kumar et al. (Kumar et al., 2002) used a multi-
objective genetic algorithm to design a communi-
cations network subject to reliability and flow 
constraints. Two objectives were considered: de-
lay and cost. The authors adopted the Pareto Con-
verging Genetic Algorithm (Kumar & Rockett, 
1998), which was developed by one of them. The 
authors showed that using a MOEA offered sev-
eral advantages, since the network designer could 
have a range of network costs and packet delays 
to choose from, knowing that their corresponding 
topologies were reliable in case of single node 
failures and that it was guaranteed that the maxi-
mum packet load on any link would not exceed 
the link capacity.  
Marseguerra et al. (Marseguerra et al., 2005) used 
a multi-objective genetic algorithm combined 
with Monte Carlo simulations to identify optimal 
network designs considering: the maximization of 
the network reliability estimate and the minimiza-
tion of its associated variance when component 
types, under uncertain reliability, and redundancy 
levels are the decision variables. The authors seem 
to adopt an elitist version of the original Nondom-
inated Sorting Genetic Algorithm (NSGA), 
(Srinivas & Deb, 1994). The Monte Carlo simula-
tion was adopted by the authors for evaluating the 
two objective functions: the expectation of net-
work reliability estimate and the negative of its 
variance. This approach was applied to two net-
work design problems, with multiple choices of 
components' types available and the possibility of 
allocating redundancy. Design constraints on total 
cost and weight were also considered. The authors 
indicated that the obtained results provided a va-
riety of alternatives to the user, which allowed the 
identification of a risk-averse network design 
characterized by a high degree of confidence in 
the actual network reliability.  
Zhang et al. (Zhang et al., 2011) model a critical 
infrastructure as a complex network for which a 

new metric is defined to understand its reliability. 
This new metric describes the average reliability 
between every pair of nodes in a complex net-
work. Then, in an effort to identify the most criti-
cal components that impact this metric, a multi-
objective optimization problem called “the critical 
component detection problem” is introduced by 
the authors. Solving this MOP provides two im-
portant insights about the behavior of a complex 
network: (1) a set of nondominated solutions that 
identify the most critical components and (2) a 
quantitative assessment of how these failures af-
fect the entire network. The MOEA adopted in 
this case is MP-PSDA which was proposed by 
some of the same authors (Claudio et al., 2009).  
 
4.2. Design of circuits and devices 
 

Deb et al. (Deb et al., 2004) treated the optimal 
placement of electronic components on a printed 
circuit board as a bi-objective problem. The ob-
jectives considered were: minimizing the overall 
wire length and minimizing the failure rate of the 
board arising due to uneven local heat accumula-
tion. The authors adopt a novel representation 
scheme which enables the use of an easier recom-
bination operator. The MOEA adopted in this case 
is the NSGA-II (Deb et al., 2002). 
Two cases for which they had previous results 
were adopted by the authors. In both cases, the 
NSGA-II was able to find much better nondomi-
nated solutions which represented very interesting 
trade-offs. Regarding wire-length minimization, 
interconnected components were placed in inde-
pendent clusters. Regarding failure-rate minimi-
zation due to temperature effects, the high-risk 
components (both in terms of high failure-rate and 
high heat-generation rates) were placed near the 
uninsulated boundaries, so that a small steady-
state temperature was developed on them. In a fi-
nal example, the authors kept the overall board 
size as a variable and two different sets of solu-
tions (one with a 18×2 configuration and another 
one with a 6×6 configuration) emerged. This illus-
trated the flexibility of this sort of MOEA-based 
approach. 
Zafiropoulos and Dialynas (Zafiropoulos & Dial-
ynas, 2004) adopted both a single-objective and a 
multi-objective optimization approach for obtain-
ing the optimal system structure of electronic de-
vices while considering constraints on reliability 
and cost. In both cases, simulated annealing was 
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adopted for performing the optimization (a linear 
aggregating function is adopted in this case). This 
approach was applied to a power electronic device 
for which the component failure rate uncertainty 
was modeled with two alternative probability dis-
tribution functions.  
Bolchini et al. (Bolchini et al., 2010) proposed a 
framework for the design space exploration of re-
liable FPGA systems based on the use of a MOEA 
(NSGA-II), (Deb et al., 2002). The authors con-
sidered two objectives: (1) the average size of the 
reconfigurable areas required for implementing 
the reliable solutions, which is directly propor-
tional to the reconfiguration time and (2) the di-
mension of the system that represents the effective 
cost of the application of reliability-oriented tech-
niques due to the introduction of voters and the 
partitioning of the functional units in reconfigura-
ble areas. An interesting aspect of this work is that 
the authors compare results with respect to a 
multi-objective version of simulated annealing 
called AMOSA (Bandyopadhyay, 2008) in terms 
of scalability, using three real-world circuits and 
a set of synthetic problems of different sizes. The 
authors reported that the NSGA-II was able to 
clearly outperform AMOSA. 
 
4.3. Systems design 
 

Sinha (Sinha, 2007) provides a methodology for 
reliability-based multi-objective optimization of 
large-scale engineering systems. Then, this meth-
odology is applied to the vehicle crashworthiness 
design optimization for side impact, considering 
both structural crashworthiness and occupant 
safety. The author considered as objectives the 
structural weight and the front door velocity under 
side impact. The author adopted two first order re-
liability method-based techniques (i.e., approxi-
mate moment and reliability index) for uncer-
tainty quantification. A software called GDOT 
was adopted. This software uses a multi-objective 
genetic algorithm for the optimization task. The 
results reported by the author indicate that the ve-
hicle weight can be significantly reduced with re-
spect to the baseline design, while reducing, at the 
same time, the door velocity. Something interest-
ing of this work is that the author adopts a deci-
sion-making criterion to select a subset from all 
the nondominated solutions obtained by the multi-
objective genetic algorithm.  
Taboada et al. (Taboada et al., 2008) developed a 

tailored MOEA to solve multi-objective multi-
state reliability optimization design problems. 
The authors adopt the multi-objective multi-state 
genetic algorithm (MOMS-GA). The objectives 
that they consider are: the maximization of the 
system availability and the minimization of both 
the system cost and the weight. MOMS-GA uses 
the universal moment generating function ap-
proach to evaluate the different reliability or avail-
ability indices of the system. The components are 
characterized by having different performance 
levels, cost, weight, and reliability. The authors 
present two examples to illustrate their approach. 
In both cases, MOMS-GA was able to obtain good 
trade-off solutions. 
Deb et al. (Deb et al., 2009) showed how classical 
reliability-based concepts can be borrowed and 
modified and integrated into both single-objective 
and multi-objective evolutionary algorithms. The 
authors discuss three different optimization tasks 
in which classical reliability-based optimization 
procedures usually have difficulties:  
• reliability-based optimization problems having 

multiple local optima,  
• finding and revealing reliable solutions for dif-

ferent reliability indices simultaneously by 
means of a bi-criterion optimization approach, 
and  

• multi-objective optimization with uncertainty 
and specified system or component reliability 
values.  

Each of these optimization tasks is illustrated by 
solving a number of test problems and a well-stud-
ied automobile design problem. Results are also 
compared with a classical reliability-based meth-
odology. The MOEA adopted by the authors is the 
NSGA-II (Deb et al., 2002). 
Ardakan and Rezvan (Ardakan & Rezvan, 2018) 
tackled the reliability-redundancy allocation 
problem, which involves the selection of compo-
nents reliability and redundancy levels with the 
aim of maximizing system reliability. The authors 
formulate this as a bi-objective problem in which 
the goal is to maximize system reliability while 
minimizing the total cost of the system. The 
MOEA adopted in this case is the NSGA-II (Deb 
et al., 2002). The authors reported that the NSGA-
II had a superior performance than traditional ap-
proaches reported in the specialized literature.  
Meedeniya et al. (Meedeniya et al., 2011) pro-
posed an approach to automate the optimal de-
ployment of software components to hardware 
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nodes. The main goal is that the reliabilities of in-
dividual services implemented at the software 
level are balanced, which is an issue when the 
hardware architecture was designed prior to the 
customized software architecture. The authors 
adopted Fonseca and Fleming's MOGA (Fonseca 
& Fleming, 1993) in their proposal and considered 
the automotive domain. The objectives consid-
ered correspond to system services (like the Anti-
lock Brake System (ABS), the Adaptive Cruise 
Control (ACC) or the Airbag service) in their au-
tomotive case study.  
 
4.4. Scheduling 
 

Cui et al. (Cui et al., 2017) conduct a reliability 
analysis of cloud services by applying a Markov-
based method. Then, they formulate the cloud 
scheduling problem as a multi-objective optimiza-
tion problem with constraints in terms of reliabil-
ity, makespan and flowtime. This problem is 
solved using a genetic algorithm-based chaotic ant 
swarm (GA-CAS) algorithm. The results show 
that the GA-CAS algorithm is able to speed up 
convergence and to outperform other metaheuris-
tics in the problem tackled by the authors. 
Ahn and Hur (Ahn & Hur, 2021) provide a math-
ematical model for cloud manufacturing. In cloud 
manufacturing, customers register customized re-
quirements, and manufacturers provide appropri-
ate services to complete the task. A cloud manu-
facturing manager establishes manufacturing 
schedules that determine the service provision 
time in a real-time manner as the requirements are 
registered in real time. In addition, customer sat-
isfaction is affected by various measures such as 
cost, quality, tardiness, and reliability. So, the au-
thors deal with a real-time and multi-objective 
task scheduling problem in which the aim is min-
imizing tardiness, cost, quality and reliability. 
This model is solved using a multi-objective ge-
netic algorithm. The authors report that their pro-
posed approach is effective and efficient.  
Han et al. (Han et al., 2021) proposed a heuristic 
called Cost and Makespan Scheduling of Work-
flows in the Cloud (CMSWC) to solve the work-
flow scheduling problem. In this case, the objec-
tives are to minimize the cost and the makespan 
(execution time) of workflows in cloud compu-
ting. 
The proposed approach follows a two-phase list 
scheduling philosophy: ranking and mapping. 

CMSWC is really a variant of MOHEFT (Durillo 
et al., 2012), which adopts Shift-based Density 
Estimation (SDE), (Li et al., 2014) to weaken the 
density estimator of the multi-objective evolution-
ary algorithm with the aim of promoting conver-
gence. The experimental results reported by the 
authors in real-life workflow applications, show 
that the proposed approach consistently produces 
solutions with better cost and makespan than 
those of state-of-the-art approaches in all cases. 
 
5. Future areas of research 
 

There is plenty of room for extending the use of 
MOEAs in reliability. The following are a few 
suggestions for possible paths for future research 
that may be worth exploring. 
• Use of Different Types of MOEAs: the use of 

decomposition-based (Santiago et al., 2014) 
and indicator-based (Falcón-Cardona et al., 
2020) MOEAs seems to be fairly limited in re-
liability. This may be due to the relatively low 
dimensionality (in objective space) of most of 
the problems that have been tackled in this 
area. However, the solution of many-objective 
problems using alternative types of MOEAs is 
still relatively rare in this area. There are some 
recent proposals which already tackle many-
objective problems, see for example (Saeedi et 
al., 2020), but more work in this direction is 
expected in the next few years. 

• Incorporation of User's Preferences: most 
MOEAs are commonly employed under the as-
sumption that the entire Pareto optimal set is 
needed. However, in most practical applica-
tions, not all the solutions are required, since 
users normally identify regions of interest 
within the Pareto front and this could be the 
case in some problems related to reliability as 
done, for example in (Sinha, 2007). So, the in-
corporation of user's preferences in the search 
conducted by a MOEA is certainly an interest-
ing research area within reliability that is worth 
exploring, see for example (Filatovas et al., 
2017; Rachmawati & Srinivasan, 2006; Hu et 
al., 2017). 

• Use of Domain Knowledge: the incorporation 
of knowledge may improve the performance of 
MOEAs adopted to solve complex problems. 
Such knowledge may be provided either a pri-
ori (when available) or can be extracted during 
the search (Landa Becerra et al., 2008; Liu, 
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2011). This knowledge may influence the op-
erators of a MOEA in order to conduct a more 
efficient and/or effective search, or can be used 
to design heuristic procedures aimed to reduce 
the size of the search space.  

 
6. Conclusion  
 

In this chapter, we have seen some representative 
problems related to reliability in which the use of 
multi-objective optimization models and multi-
objective evolutionary algorithms to solve them 
has shown several relevant advantages. 
The use of multi-objective evolutionary algo-
rithms in this area still has a lot of potential and 
many more applications are expected to occur 
within the next few years. Also, other mecha-
nisms, which have been traditionally adopted in 
evolutionary multi-objective optimization, could 
bring additional benefits to this area as briefly dis-
cussed in the final part of the chapter. 
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