PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Conversion of compression test data into flow curve, accounting for barrelling

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Current solutions to convert the axis-symmetric compression test (ACT) data to flow data ignore the barrelling deformation in the sample. This work presents a solution for the test which accounts for the sample’s barrelling by discretising it into a finite number of layers of different radii. The solution assumes a constant and sliding friction at the anvil-sample interface. The sample’s flow behaviour is identified by combining a recent kinematic solution of the test, Prandtl–Reuss–Mises’s equations and a slab-analysis of the layers. It also involves an averaging of the effective plastic stresses developed in the individual layers. The solution is verified for a special case of no-barrelling which matches the currently used solution.
Wydawca
Rocznik
Strony
157--162
Opis fizyczny
Bibliogr. 19 poz., rys.
Twórcy
  • Deakin University, Institute for Frontier Materials, GTP Building, 75 Pigdons Road, Waurn Ponds, VIC 3216, Australia
  • Deakin University, Institute for Frontier Materials, GTP Building, 75 Pigdons Road, Waurn Ponds, VIC 3216, Australia
Bibliografia
  • Avitzur, B. (1968). Metal forming. Processes and analysis. McGraw-Hill.
  • Beck, J.V., & Arnold, K.J. (1977). Parameter Estimation in Engineering and Science. John Wiley & Sons.
  • Fardi, M., Abraham, R., Hodgson, P.D., & Khoddam, S. (2017). A New Horizon for Barrelling Compression Test: Exponential Profile Modelling. Journal of Advanced Materials, 19(11), 1700328, https://doi.org/10.1002/adem.201700328.
  • Guerrero, G.A., Granados, I.M., & Marrero J.M.C. (2012). Determination of the critical parameters for the onset of dynamic recrystallization (DRX) in advanced ultrahigh strength steels (A-UHSS) microalloyed with boron. Computer Methods in Materials Science, 12(3), 152–162.
  • Gzyl, M.Z., Sikora, K., Olejnik, L., Rosochowski, A., & Qarni, M.J. (2015). Determination of friction factor by ring compression testing and FE analysis. Computer Methods in Materials Science, 15(1), 156–161.
  • Khoddam, S. (2018). Deformation under combined compression and shear: a new kinematic solution. Journal of Materials Science, 54(6), 4754–4765. https://doi.org/10.1007/s10853-018-03201-0.
  • Khoddam, S., & Hodgson, P.D. (2015). The need to revise the current methods to measure and assess static recrystallization behavior. Mechanics of Materials, 89, 85–97. http://dx.doi.org/10.1016/j.mechmat.2015.06.008.
  • Khoddam, S., Hodgson, P.D. & Bahramabadi, M.J. (2011). An inverse thermal-mechanical analysis of the hot torsion test for calibrating the constitutive parameters. Materials & Design, 32(4), 1903–1909. https://doi.org/10.1016/j.matdes.2010.12.010.
  • Khoddam, S., Solhjoo, S. & Hodgson, P.D. (2019). A power-based approach to assess the barrelling test’s weak solution. International Journal of Mechanical Sciences, 161–162, 105033. https://doi.org/10.1016/j.ijmecsci.2019.105033.
  • Khoddam, S., Fardi, M. & Solhjoo, S. (2021). A verified solution of friction factor in compression test based on its sample’s shape changes. International Journal of Mechechanical Science, 193, 106175. https://doi.org/10.1016/j.ijmecsci.2020.106175.
  • Madej, Ł., Mrozek, A., Kuś, W., Burczyński, T., & Pietrzyk, M. (2008). Concurrent and upscaling methods in multi scale modelling – case studies. Computer Methods in Materials Science, 8(1), 1–15.
  • Osakada, K. (2010). History of plasticity and metal forming analysis. Journal of Materials Processing Technology, 210(11), 1436–1454.
  • Petitprez, M., & Mocellin, K. (2013). Non standard samples behaviour law parameters determination by inverse analysis. Computer Methods in Materials Science, 13(1), 56–62.
  • Prandtl, L. (1924). Spannungsverteilung in plastischen Körpern. In Proceedigs of the first International Conference on Applied Mechanics, Delft University (pp. 43–54).
  • Rauch, L., Madej, L., Jurczyk, T., & Pietrzyk, M. (2007). Complex Modelling Platform based on Digital Material Representation. In G. Loureiro & R. Curran (Eds.), Complex Systems Concurrent Engineering (pp. 403–410). Springer-Verlag London
  • Rauch, Ł., Skóra, M., Bzowski, K., & Pietrzyk M. (2017). Numerical model of cold deformation of TRIP steel. Computer Methods in Materials Science, 17(4), 207–217.
  • Reuss, A. (1930). Berücksichtigung der elastischen Formänderung in der Plastizitätstheorie. ZAMM – Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, 10(3), 266–274.
  • Rowe, G.W. (1979). Elements of metalworking theory. E. Arnold.
  • Sztangret, Ł., Sztangret, M., Kusiak, J. & Pietrzyk, M. (2014). Metamodel of the plane strain compression test as a replacement of FE model in the inverse analysis. Computer Methods in Materials Science, 14(4), 215–227.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e589c10a-fac4-40b3-8c2d-681fff1b111c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.