PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Characterization of the mechanomyographic signal of three different muscles and at different levels of isometric contractions

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: Lateral (X) and longitudinal (Y) mechanical oscillations of muscle fibers that take place during muscular contraction seem to contain information additionally to the myoelectric activity, which can contribute to the interpretation of some muscle gradation force mechanisms. However, no previous study was found that had investigated the relationship between the muscle force and features associated to the mechanomyographic (MMG) signal obtained by means of a biaxial accelerometer in three different muscles. Therefore, the aim of this study was to evaluate the relationship between the force output at different load levels (20% to 100%) of the maximum voluntary isometric contraction (%MVIC) and the two signals supplied by a biaxial accelerometer and, in addition, the so-called resultant (R) acceleration signal derived from the two signals mentioned previously. Twenty seven male volunteers participated in this study. Methods: The force output related to the right biceps brachii, soleus and gastrocnemius medialis muscles was studied by means of linear regression models fit to log-transformed of the root mean square (RMS) values of the MMG signals in X, Y, and R axes versus each %MVIC. The phase angle of R acceleration (PhaseR) and anthropometric data were also considered. Results: The angular coefficient a and the antilog of y-intercept b from the log-transformed of MMG data values versus force output were able to distinguish partially motor unit strategies during isometric contractions in the three muscles studied. Conclusion: The findings suggest that biaxial accelerometer seems to be an interesting approach in the assessment of muscle contraction properties.
Rocznik
Strony
73--84
Opis fizyczny
Bibliogr. 25 poz. il., wykr.
Twórcy
autor
  • Laboratório de Instrumentação Biomédica (LIB) – PEB/COPPE/UFRJ, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, Brazil
  • Laboratório de Instrumentação Biomédica (LIB) – PEB/COPPE/UFRJ, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, Brazil
  • Departamento de Biociências da Atividade Física – EEFD/UFRJ Cidade Universitária, Ilha do Fundão, Rio de Janeiro, Braziil
autor
  • Laboratório de Instrumentação Biomédica (LIB) – PEB/COPPE/UFRJ, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, Brazil
  • Laboratório de Instrumentação Biomédica (LIB) – PEB/COPPE/UFRJ, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, Brazil
Bibliografia
  • [1] AKATAKI K., MITA K., ITOH Y., Relationship between mechanomyogram and force during voluntary contractions reinvestigated using spectral decomposition, Eur. J. Appl. Physiol. Occup. Physiol., 1999, Vol. 80(3), 173–79.
  • [2] ASAKAWA D.S., PAPPAS G.P., DELP S.L., DRACE J.E., Aponeurosis length and fascicle insertion angles of the biceps brachii, J. Mech. Med. Bio.l, 2002, Vol. 2(3), DOI: 10.1142/S0219519402000484.
  • [3] BECK T.W., HOUSH T.J., JOHNSON G.O., WEIR J.P., CRAMER J.T., COBURN J.W., MALEK M.H., Mechanomyographic amplitude and mean power frequency versus torque relationships during isokinetic and isometric muscle actions of the biceps brachii, J. Electromyogr. Kinesiol., 2004, Vol. 17(3), 555–564.
  • [4] BECK T.W., DILLON M.A., DE FREITAS J.M., STOCK M.S., Cross-correlation analysis of mechanomyographic signals detected in two axes, Physiol. Meas., 2009, Vol. 30(12), 1465– 1471.
  • [5] CESCON C., FARINA D., GOBBO M., MERLETTI R., ORIZIO C., Effect of accelerometer location on mechanomyogram variables during voluntary, constant-force contractions in three human muscles, Med. Biol. Eng. Comput., 2004, Vol. 42(1), 121–127.
  • [6] DAHMANE R., DJORDJEVIC S., SIMUNIC B., VALENCIC V., Spatial fiber type distribution in normal human muscle Histochemical and tensiomyographical evaluation, J. Biomech., 2005, Vol. 13(12), 2451–2459.
  • [7] DE LUCA C.J., ERIM Z., Common drive of motor units in regulation of muscle force, Trends Neurosci., 1994, Vol. 17(7), 299–305.
  • [8] FINNI T., HODGSON J.A., LAI A.M., EDGERTON V.R., SINHA S., Mapping of movement in the isometrically contracting human soleus muscle reveals details of its structural and functional complexity, J. Appl. Physiol., 2003, Vol. 95(5), 2128–2133.
  • [9] HERBERT R.D., GANDEVIA S.C., Changes in pennation with joint angle and muscle torque: in vivo measurements in human brachialis muscle, J. Physiol., 1995, Vol. 484(2), 523–532.
  • [10] HERDA T.J., WEIR J.P., RYAN E.D., WALTER A.A., COSTA P.C., HOGE K.M., BECK T.W., STOUT J.R., CRAMER J.T., Reliability of absolute versus log-transformed regression models for examining the torque-related patterns of response for mechanomyographic amplitude, J. Neurosci. Methods, 2009, Vol. 179(2), 240–246.
  • [11] HERMENS J.H., FRERIKS B., KLUG C.D., RAU G.G., Development of recommendations for SEMG sensors and sensor placement procedures, J. Electromyogr. Kinesiol., 2000, Vol. 10(5), 361–374.
  • [12] INMAN V.T., RALSTON H.J., TODD F., Human Walking, Lippincott Williams & Wilkins, 1981.
  • [13] JASKÓLSKA A., MADELEINE P., JASKÓLSKI A., KISIEL-SAJEWICZ K., ARENDT-NIELSEN L.A., Comparison between mechanomyographic condenser microphone and accelerometer measurements during submaximal isometric, concentric and eccentric contractions, J. Electromyogr. Kinesiol., 2007, Vol. 17(3), 336–347.
  • [14] JOHNSON M.A., POLGAR J., WEIGHTMAN D. APPLETON D., Data on the distribution of fibre types in thirty-six human muscles. An autopsy study, J. Neurol. Sci., 1973, Vol. 18(1), 111–129.
  • [15] KAWAKAMI Y., ICHINOSE Y., FUKUNAGA T., Architectural and functional features of human triceps surae muscles during contraction, J. Appl. Physiol., 1998, Vol. 85(2), 398–404.
  • [16] KRUEGER E., SCHEEREN E.M., NOGUEIRA-NETO G.N., NEVES E.B., BUTTON V.L.S.N., NOHAMA P., Influence of Skinfold Thickness in Mechanomyography Features, IFMBE Proceedings, 2013, Vol. 39, 2030–2033.
  • [17] MADELEINE P., BAJAJ P., SØGAARD K., ARENDT-NIELSEN L., Mechanomyography and electromyography force relationships during concentric, isometric and eccentric contractions, J. Electromyogr. Kinesiol., 2001, Vol. 11(2), 113–121.
  • [18] MATTA T.T., PERINI T.A., OLIVEIRA G.L., ORNELLAS J.S., LOUZADA A.A., MAGALHÃES J., IMBIRIBA L.A., GARCIA M.A.C., Interpretation of the mechanisms related to the muscular strength gradation through accelerometry, Br. J. Sports Med., 2005, Vol. 11(5), 306–310.
  • [19] MEALING D., LONG G., MCCARTHY P.W., Vibromyographic recording from human muscles with known fibre composition differences, Brit. J. Sport Med., 1996, Vol. 3(1), 27–31.
  • [20] NORTON, K., OLDS T., Anthropometrica, UNSW Press, 1996.
  • [21] OLDFIELD R.C., The assessment and analysis of handedness: the Edinburgh inventory, Neuropsychologia, 1971, Vol. 9(1), 197–113.
  • [22] ORIZIO C., Mechanomyography, [in:] R. Merletti, P.A. Parker, Electromyography – Physiology, Engineering and Noninvasive Applications, Wiley-Interscience, 2004, 305–318.
  • [23] OYA T., RIEK S., CRESSWELL A.G., Recruitment and rate coding organization for soleus motor units across entire range of voluntary isometric plantar flexions, J. Physiol., 2009, Vol. 587(Pt 19), 4737–4748.
  • [24] POLATO D., CARVALHO M.C., GARCIA M.A.C., Effects of two anthropometric parameters in the behaviour of the mechanomyographic signal on muscle force tests, Br. J. Sports Med., 2008, Vol. 14(3), 221–226.
  • [25] YOSHITAKE Y., MORITANI T., The muscle sound properties of different muscle fiber types during voluntary and electrically induced contractions, J. Electromyogr. Kinesiol., 1999, Vol. 9(3), 209–217
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e581c662-a7b2-4df8-97cb-b4859791cec4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.