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1. Introduction 
 
In [5], a simple test for the separability of 
quantum states consisting of nonnegative real 
quantum probability amplitudes was introduced. 
Based on that, similar considerations regarding 
complex amplitudes are presented here in this 
paper. 
 
2. Quantum states equivalence 
 
The so-called classical quantum state description 
is formed by a vertical vector or, in terms of 
Dirac’s notation, a ket. Each element of the ket 
is a complex number and the squares of its 
moduli are the probabilities of observing  
the corresponding basis states, if measured in  
the standard basis. In short, a quantum state is 
expressed with a ket |�𝝋⟩� as follows: 
 

|�𝝋⟩� = � 𝛿𝑎|�𝑎⟩�𝑛

2𝑛−1

𝑎=0

 

(1) 
where each |�𝑎⟩�𝑛 is a basis state 
 

|�𝑎⟩�𝑛 = [0, … ,0,1,0, … ,0]𝑇  (2) 
and  
 

� |𝛿𝑎|2
2𝑛−1

𝑎=0

= 1 

(3) 
 
with 1 in the (𝑎 + 1)th position and 0’s in all  
the other 2𝑛 − 1 positions. 

The alternative description of quantum 
states uses the notion of a density matrix 𝜌, 
defined as 
 

𝜌 = |�𝝋⟩�⟨�𝝋|�.  (4) 
 
Since the relation between a ket |�𝝋⟩� and  
the corresponding bra ⟨�𝝋|� is that one is the 
conjugate transpose of the other, we have that, 
for any phase 𝑥 ∈ [0; 2𝜋) + 2𝑘𝜋, where 
𝑘 = ⋯ ,−1, 0, 1, 2, …, the state 𝜌, classically 
expressed as |�𝝋⟩� is equivalent to a state 𝜌′ 
expressed classically as |�𝝋′⟩� = 𝑒𝑖𝑥|�𝝋⟩� as both 
are described with the same density matrix. 
Indeed, 
 

𝜌′ = |�𝝋′⟩�⟨�𝝋′|� = �𝑒𝑖𝑥|�𝝋⟩���𝑒−𝑖𝑥⟨�𝝋|�� = 
= |�𝝋⟩�⟨�𝝋|� = 𝜌 

(5) 
Thus, without loss of generality, we can choose 
one of the equivalent forms of (1) for further 
consideration. Assuming that, in the polar form, 
the amplitude 𝛿0 = 𝑒𝑖𝑥0|𝛿0|, we can always pick 
up the state 𝑒−𝑖𝑥0|�𝝋⟩� instead of |�𝝋⟩�. This way, 
the phase shift of the amplitude standing by 

|�𝟎⟩�𝑛 = |�00 … 0⟩������
𝑛 times

 is cancelled and the amplitude 
itself is nonnegative real. Hence, from now on,  
if necessary, we can assume that 𝛿0 is  
a nonnegative real number, and not complex. Let 
us call this equivalent state canonical. 
 
3. Quantum state separability 
 
Assume that the set of qubits {1, 2, … ,𝑛} is split 
into two – one consisting of 𝑑 qubits and  
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the other consisting of 𝑛 − 𝑑 qubits. Without 
loss of generality, we can assume that the qubits 
are split as {1, 2, … ,𝑑} ∪ {𝑑 + 1,𝑑 + 2, … ,𝑛}. 
Indeed, any permutation of qubits is a unitary 
operation, hence reversible. If so, we can always 
rearrange them just before our considerations 
and revert their order afterward. Now, we can 
define the 𝑑1-𝑑2-separability, where 𝑑1 = 𝑑 and 
𝑑2 = 𝑛 − 𝑑, as follows: 
 
Definition 1 
A quantum state |�𝛟⟩� of 𝑛 = 𝑑1 + 𝑑2 qubits is 
𝑑1-𝑑2-separable, if it is a tensor product of two 
quantum states: |�𝛟A⟩� of 𝑑1 and |�𝛟B⟩� of 𝑑2 
qubits, respectively. That is, there exist |�𝛟A⟩� and 
|�𝛟B⟩�, such that 
 

|�𝛟⟩� = |�𝛟A⟩� ⊗ |�𝛟B⟩� 
(6) 

● 
 
For the sake of simplicity, let us slightly change 
the form of (1), exchanging each single-indexed 
complex number 𝛿𝑎 with a double-indexed 
length 𝛾𝑘𝑙 along with a double-indexed angle 𝜃𝑘𝑙 
as follows: 

𝛾𝑘𝑙 = |𝛿𝑎|, 

𝜃𝑘𝑙 = Arg{𝛿𝑎} 

𝑎 = 𝑘 ⋅ 2𝑑2 + 𝑙, 

(7) 
where 𝑘 iterates over the basis state indices of 
the first 𝑑1 qubits and 𝑙 – over the basis state 
indices of the last 𝑑2 qubits (thus 𝑎 iterates over 
the basis state indices of all 𝑛 = 𝑑1 + 𝑑2 qubits). 
 
Then, we can express (1) in a form that will 
simplify further notations: 
 

|�𝝋⟩� = � 𝛿𝑎|�𝑎⟩�𝑛

2𝑛−1

𝑎=0

= � � 𝑒𝑖𝜃𝑘𝑙𝛾𝑘𝑙|�𝑘⟩�|�𝑙⟩�
2𝑑2−1

𝑙=0

2𝑑1−1

𝑘=0

. 

(8) 
Since the number of qubits in each of the two 
subgroups (𝑑1 and 𝑑2, respectively) is known 
from the context, the form |�𝑘⟩�|�𝑙⟩� will be  
an abbreviation for |�𝑘⟩�𝑑1 ⊗ |�𝑙⟩�𝑑2. In general, if 
not leading to ambiguity, �|𝑥⟩ will stand for some 
�|𝑥⟩𝑑, where 𝑑 is the number of qubits known 
from the context and 𝑥 within �| ⋅ ⟩ means its 
binary representation – hence �|𝑥⟩ is, in fact, a 
tensor product of �|0⟩’s and �|1⟩’s. Moreover, �|𝟎⟩ 
will stand for some �|00 … 0⟩, where the number 
of 0’s is known from the context as well. 
Remember also that, if not losing generality, we 

will assume 𝜃00 = 𝛿0 = 0 in order for |�𝝋⟩� to be 
in a canonical form. 

Assume now that |�𝝋⟩� is separable, that is, 
there exist |�𝝋𝐴⟩� and |�𝝋𝐵⟩� such that |�𝝋⟩� = 
= |�𝝋𝐴⟩�|�𝝋𝐵⟩�. Let also: 

 

|�𝝋𝐴⟩� = � 𝑒𝑖𝜉𝑘𝛼𝑘�|𝑘⟩
2𝑑1−1

𝑘=0

=

= 𝛼0�|𝟎⟩ + � 𝑒𝑖𝜉𝑘𝛼𝑘�|𝑘⟩
2𝑑1−1

𝑘=1

 

(9) 

|�𝝋𝐵⟩� = � 𝑒𝑖𝜁𝑙𝛽𝑙 �|𝑙⟩
2𝑑2−1

𝑙=0

=

= 𝛽0�|𝟎⟩+ � 𝑒𝑖𝜁𝑙𝛽𝑙 �|𝑙⟩
2𝑑2−1

𝑙=1

 

(10) 
Of course, again we have just put the amplitudes 
by both �|𝟎⟩’s to be nonnegative real, that is 
𝜉0 = 𝜁0 = 0. Moreover, the following must 
hold: 
 

� |𝛼𝑘|2
2𝑑1−1

𝑘=0

= � |𝛽𝑙|2
2𝑑2−1

𝑙=0

= 1. 

(11) 
Now, substituting (9) and (10) into (8), 
 
|�𝝋𝐴⟩�|�𝝋𝐵⟩� = 

= � � 𝑒𝑖𝜉𝑘𝛼𝑘|�𝑘⟩�
2𝑑1−1

𝑘=0

�� � 𝑒𝑖𝜁𝑙𝛽𝑙|�𝑙⟩�
2𝑑2−1

𝑙=0

� = 

= � � 𝑒𝑖(𝜉𝑘+𝜁𝑙)𝛼𝑘𝛽𝑙|�𝑘⟩�|�𝑙⟩�
2𝑑2−1

𝑙=0

2𝑑1−1

𝑘=0

= 

= � � 𝑒𝑖𝜃𝑘𝑙𝛾𝑘𝑙|�𝑘⟩�|�𝑙⟩�
2𝑑2−1

𝑙=0

2𝑑1−1

𝑘=0

, 

(12) 
we receive, if |�𝝋⟩� is 𝑑1-𝑑2-separable, that 
 

𝛾𝑘𝑙 = 𝛼𝑘𝛽𝑙 ,   (13) 
and 

𝜃𝑘𝑙 =2𝜋 𝜉𝑘 + 𝜁𝑙 , (14) 
 
if 𝛾𝑘𝑙 ≠ 0. (Here, the congruence relation 
𝑎 =𝑥 𝑏 means that there exist an integer 𝑦 ∈ ℤ 
such that 𝑎 = 𝑏 + 𝑥𝑦). Note that the case 𝛾𝑘𝑙 = 
= 0 makes the considerations complicated, 
hence as of now, if not stated otherwise, we will 
assume that 𝛾𝑘𝑙 ≠ 0, for every 𝑘, 𝑙 and will call 
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such quantum states inner. We will come back 
to the case 𝛾𝑘𝑙 = 0 later. 

Due to the previous assumptions, the 
quantum probability amplitude phase shift 𝜃00, 
standing by |�𝟎⟩�𝑛 = |�𝟎⟩�𝑑1 ⊗ |�𝟎⟩�𝑑2, is 0. Thus, 
the states we consider follow the rule of always 
choosing the canonical equivalent state. Even if 
we have chosen noncanonical |�𝝋𝐴⟩� and/or |�𝝋𝐵⟩�, 
we could always turn the resulting quantum state 
|�𝝋⟩� = |�𝝋𝐴⟩�|�𝝋𝐵⟩� to be so, by multiplying it by 
𝑒−𝑖𝜃00 = 𝑒−𝑖(𝜉0+𝜁0). It is easy to see that this is 
equivalent to turning |�𝝋𝐴⟩� into a canonical state 
by multiplying it by 𝑒−𝑖𝜉0 and, at the same time, 
turning |�𝝋𝐵⟩� into a canonical state by 
multiplying it by 𝑒−𝑖𝜁0. Our task to find the 
separation for a quantum state is thus equivalent 
to find two canonical states |�𝝋𝐴⟩� and |�𝝋𝐵⟩�, the 
tensor product of whose form a presumably 
canonical state |�𝝋⟩�. Indeed, every problem of 
noncanonical state |�𝝋′⟩� can be reformulated as 
finding the following canonical separation for  
a canonical state: 
 

|�𝝋′⟩� = 𝑒−𝑖𝜃00|�𝝋⟩� = 𝑒−𝑖𝜃00(|�𝝋𝐴⟩� ⊗ |�𝝋𝐵⟩�) = 
= 𝑒−𝑖𝜉0|�𝝋𝐴⟩� ⊗ 𝑒−𝑖𝜁0|�𝝋𝐵⟩�, (15) 

 
where |�𝝋⟩�, |�𝝋𝐵⟩�, and |�𝝋𝐵⟩� are in their canonical 
forms. 
 
4. Quantum state separation 
 
Assume we have a separable quantum state 
|�𝝋⟩� = |�𝝋𝐴⟩�|�𝝋𝐵⟩�. Let also |�𝝋𝐴

′ ⟩� and |�𝝋𝐵
′ ⟩� be 

defined as follows (compare to [5]): 
 

|�𝝋𝐴
′ ⟩� = � 𝑒𝑖𝜉𝑘

′
𝛼𝑘′ |�𝑘⟩�

2𝑑1−1

𝑘=0

, 

(16) 

|�𝝋𝐵
′ ⟩� = � 𝑒𝑖𝜁𝑙

′
𝛽𝑙′|�𝑙⟩�

2𝑑2−1

𝑙=0

, 

(17) 
where  

𝛼𝑘′ = � � 𝛾𝑘𝑙2
2𝑑2−1

𝑙=0

, 

(18) 

𝛽𝑙′ = � � 𝛾𝑘𝑙2
2𝑑1−1

𝑘=0

, 

(19) 
𝜉𝑘′ = 𝜃𝑘0  (20) 
𝜁𝑙′ = 𝜃0𝑙.  (21) 

It is easy to see that |�𝝋𝐴
′ ⟩� and |�𝝋𝐵

′ ⟩� are well- 
-defined quantum probability states in a 
canonical form (𝜉0′ = 𝜁0′ = 𝜃00 = 0). Indeed, 
based on the form (1) together with the condition 
(3), we have 
 

� �𝑒𝑖𝜉𝑘
′
𝛼𝑘′ �

2
2𝑑1−1

𝑘=0

= � |𝛼𝑘′ |2
2𝑑1−1

𝑘=0

= 

= � � 𝛾𝑘𝑙2
2𝑑2−1

𝑙=0

2𝑑1−1

𝑘=0

= 1, 

(22) 
 
and similarly 
 

� �𝑒𝑖𝜁𝑙
′
𝛽𝑙′�

2
2𝑑2−1

𝑙=0

= � |𝛽𝑙′|2
2𝑑2−1

𝑙=0

= 

= � � 𝛾𝑘𝑙2
2𝑑1−1

𝑘=0

2𝑑2−1

𝑙=0

= � � 𝛾𝑘𝑙2
2𝑑2−1

𝑙=0

2𝑑1−1

𝑘=0

= 1. 

(23) 
 
Hence, the norm of both states |�𝝋𝐴

′ ⟩� and |�𝝋𝐵
′ ⟩� is 

1. This shows that these two states hold (3) 
accordingly. Moreover, for a 𝑑1-𝑑2-separable 
state |�𝝋⟩� = |�𝝋𝐴⟩�|�𝝋𝐵⟩�, 
 

𝛼𝑘′ = � � 𝛾𝑘𝑙2
2𝑑2−1

𝑙=0

= � � 𝛼𝑘2𝛽𝑙2
2𝑑2−1

𝑙=0

= 

= 𝛼𝑘� � 𝛽𝑙2
2𝑑2−1

𝑙=0

= 𝛼𝑘 , 

(24) 
and 

𝛽𝑙′ = � � 𝛾𝑘𝑙2
2𝑑1−1

𝑘=0

= � � 𝛼𝑘2𝛽𝑙2
2𝑑1−1

𝑘=0

=

= 𝛽𝑙� � 𝛼𝑘2
2𝑑1−1

𝑘=0

= 𝛽𝑙 . 

(25) 
 
The (24) and (25) show that, for a separable 
|�𝝋⟩�, |�𝝋𝐴⟩� and |�𝝋𝐵⟩� coincide with |�𝝋𝐴

′ ⟩� and 
|�𝝋𝐵

′ ⟩�, respectively, in the moduli of their 
amplitudes.  

Now, it remains to show that they coincide 
also in phase shifts, i.e. equal up to the period 
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2𝜋. Indeed, according to (14), (20), and (21) we 
have 

𝜉𝑘′ = 𝜃𝑘0 =2𝜋 𝜉𝑘 + 𝜁0 = 𝜉𝑘 
(26) 

and 
𝜁𝑙′ = 𝜃0𝑙 =2𝜋 𝜉0 + 𝜁𝑙 = 𝜁𝑙 

(27) 
 
This basically gives proof for the following 
theorem: 
 
Theorem 1 
An inner quantum state |�𝝋⟩� is 𝑑1-𝑑2-separable if 
and only if |�𝝋⟩� = |�𝝋𝐴

′ ⟩�|�𝝋𝐵
′ ⟩� (up to their 

canonical forms). 
 
Proof 
It has already been shown that, for a separable 
|�𝝋⟩�, |�𝝋𝐴

′ ⟩� equals to |�𝝋𝐴⟩� and |�𝝋𝐵
′ ⟩� equals to 

|�𝝋𝐵⟩�, hence |�𝝋𝐴
′ ⟩�|�𝝋𝐵

′ ⟩� equals to |�𝝋𝐴⟩�|�𝝋𝐵⟩� = 
= |�𝝋⟩�. On the other hand, if |�𝝋⟩� equals to 
|�𝝋𝐴

′ ⟩�|�𝝋𝐵
′ ⟩�, then it is separable (𝑑1-𝑑2-separable) 

by definition. ■ 
 
We can also extend the above theorem to the 
general notion of separability: 
 
Theorem 2 
An inner quantum state |�𝝋⟩� is (generally) 
separable if and only if there exists 𝑑1  
and 𝑑2, such that 𝑛 = 𝑑1 + 𝑑2 and 
|�𝝋⟩�𝑛 = |�𝝋𝐴

′ ⟩�𝑑1 ⊗ |�𝝋𝐵
′ ⟩�𝑑2 (up to their canonical 

forms). 
 
Proof 
This directly results from theorem 1 and the 
definition of separability (see e.g. [1], [6]). ■ 
 
Example 1 
Let |�𝝋�⟩� = 𝑖

2
|�00⟩� − 𝑖

2
|�11⟩� − 𝑖

2
|�11⟩�+ 𝑖

2
|�11⟩�. We 

consider |�𝝋⟩� = 1
𝑖

|�𝝋�⟩� = �1
2

; −1
2

; −1
2

; 1
2
�
𝑇
. We have 

𝛼0′ = �𝛾002 + 𝛾012 = 1
√2

, 𝜉0′ = 𝜃00 = 0, 

𝛼1′ = �𝛾102 + 𝛾112 = 1
√2

, 𝜉1′ = 𝜃10 = 𝜋, 

𝛽0′ = �𝛾002 + 𝛾102 = 1
√2

, 𝜁0′ = 𝜃00 = 0, 

𝛽1′ = �𝛾012 + 𝛾112 = 1
√2

, 𝜁1′ = 𝜃01 = 𝜋. 

Next, |�𝝋𝐴
′ ⟩� = |�𝝋𝐵

′ ⟩� = 1
√2

|�0⟩� − 1
√2

|�1⟩� and, 
finally, 

𝑖|�𝝋𝐴
′ ⟩�|�𝝋𝐵

′ ⟩� = �𝑖
2

; −𝑖
2

; −𝑖
2

; 𝑖
2
�
𝑇

= |�𝝋�⟩�. We conclude 

that |�𝝋�⟩� is separable: |�𝝋�⟩� = � 𝑖
√2

|�0⟩� − 𝑖
√2

|�1⟩�� ⊗

⊗ � 1
√2

|�0⟩� − 1
√2

|�1⟩��. ▲ 
 

Example 2 
Let |�𝝋�⟩� = 𝑖

2
|�00⟩� − 𝑖

2
|�11⟩� + 𝑖

2
|�11⟩�+ 𝑖

2
|�11⟩�. 

Thus, we consider |�𝝋⟩� = 1
𝑖

|�𝝋�⟩� = �1
2

; −1
2

; 1
2

; 1
2
�
𝑇
. 

We have 
𝛼0′ = �𝛾002 + 𝛾012 = 1

√2
, 𝜉0′ = 𝜃00 = 0, 

𝛼1′ = �𝛾102 + 𝛾112 = 1
√2

, 𝜉1′ = 𝜃10 = 0, 

𝛽0′ = �𝛾002 + 𝛾102 = 1
√2

, 𝜁0′ = 𝜃00 = 0, 

𝛽1′ = �𝛾012 + 𝛾112 = 1
√2

, 𝜁1′ = 𝜃01 = 𝜋, 
yielding 
|�𝝋𝐴

′ ⟩� = 1
√2

|�0⟩� + 1
√2

|�1⟩�, 

|�𝝋𝐵
′ ⟩� = 1

√2
|�0⟩� − 1

√2
|�1⟩�, 

concluding that |�𝝋�⟩� is not separable, albeit very 
similar to the separable state from example 1, 
since |�𝝋�⟩� = 𝑖|�𝝋⟩� ≠ 𝑖(|�𝝋𝐴

′ ⟩�|�𝝋𝐵
′ ⟩�). ▲ 

 
5. Phase shifts 
 
The formulas (20) and (21) were chosen 
arbitrarily so that, in view of (26), (27), and (14), 
taking into account that 𝜃00 = 𝜉0 = 𝜁0 = 0, and 
for any 𝑘,𝑘′, 𝑙, 𝑙′, the following would hold for 
every separable state: 
 

𝜃𝑘𝑙 − 𝜃𝑘′𝑙 =2𝜋 𝜃𝑘𝑙′ − 𝜃𝑘′𝑙′. (28) 
 
The above guarantees that there exist such 
(𝜉𝑘)𝑘=02𝑑1−1 and (𝜁𝑙)𝑙=02𝑑2−1 that 𝜃𝑘𝑙 =2𝜋 𝜉𝑘 + 𝜁𝑙, as 
per (14). However, (20) and (21) could have 
been chosen differently. We only require that, 
for a separable state, 𝜉𝑘′ =2𝜋 𝜉𝑘 and 𝜁𝑙′ =2𝜋 𝜁𝑙. 
Thus, we are free to formulate it as 
 

𝜉𝑘′ = 𝜃𝑘𝑙 − 𝜃0𝑙, for any 𝑙 (29) 
𝜁𝑙′ = 𝜃0𝑙.   (30) 

 
Even more, instead of (29), we can take any 
weighted average 
 

𝜉𝑘′ = � 𝑤𝑙(𝜃𝑘𝑙 − 𝜃0𝑙)
2𝑑2−1

𝑙=0

, 

 (31) 
where 

� 𝑤𝑙

2𝑑2−1

𝑙=0

= 1. 

(32) 
 
Note that (32) does not require 𝑤𝑙’s to form  
a convex combination of (𝜃𝑘𝑙 − 𝜃0𝑙)’s. Since, in 
view of (28), 𝜃𝑘𝑙 − 𝜃0𝑙 =2𝜋 𝜃𝑘0 − 𝜃00 (taking 
𝑙′ = 0), we derive from (31) and (32) 
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𝜉𝑘′ = � 𝑤𝑙(𝜃𝑘𝑙 − 𝜃0𝑙)
2𝑑2−1

𝑙=0

=2𝜋 

=2𝜋 (𝜃𝑘0 − 𝜃00) � 𝑤𝑙

2𝑑2−1

𝑙=0

= 

= 𝜃𝑘0 − 𝜃00 = 𝜃𝑘0. 
(33) 

 
This obviously coincides with (20) (up to the 
period 2𝜋). 
 
6. States with zero amplitudes 
 
The formula (14) for 𝜃𝑘𝑙 is correct, if the 
corresponding amplitude length is not 0, i.e. 
𝛾𝑘𝑙 ≠ 0. However, this is not always the true.  
If 𝛾𝑘𝑙 happens to be 0, the test for separability is 
not that straightforward and needs some 
reasoning, sometimes a little bit tricky. Note that 
(14) allows 𝜃𝑘𝑙’s to be anything we like and the 
quantum state in question can be separable, if all 
of these 𝜃𝑘𝑙’s hold (28) – apart from (13) and 
(14). Thus, let us treat all such 𝜃𝑘𝑙’s, for which 
𝛾𝑘𝑙 = 0, as variables and build a system of 
equations to check if it has any solution. 
Remember that, if 𝜅 is a solution for some 
variable 𝜃𝑘𝑙, then 𝜅 ± 2𝜋 is so as well. 
 
Example 3 
Let |�𝝋�⟩� = 𝑖

√2
|�00⟩� + 1

√2
|�11⟩� = 𝑖 � 1

√2
|�00⟩� +

− 𝑖
√2

|�11⟩��, i.e. we consider |�𝝋⟩� = 

= � 1
√2

; 0; 0; −𝑖
√2
�
𝑇
. It gives 𝛾00 = 𝛾11 = 1

√2
, 𝛾01 = 

= 𝛾10 = 0, 𝜃00 = 0,  𝜃11 = −𝜋. Since 𝛾01 and 
𝛾10 are 0, we need to solve the following 
equations for 𝜃01 and 𝜃10: 

𝜃01 + 𝜃10 =2𝜋 𝜃00 + 𝜃11 =  −𝜋  �����������
const

. Since this is 
the only equation in a system, this further 
reduces to 𝜃01 + 𝜃10 = 𝜋 (as this is enough to 
find just one sum 𝜃01 + 𝜃10 instead of infinitely 
many of them, differing by multiples of 2𝜋).  
Let 𝜃01 be some arbitrarily chosen value 𝜅 ∈ 
∈ [0; 2𝜋), then 𝜃10 = 𝜋 − 𝜃01 = 𝜋 − 𝜅. Next, 
based on (18), (19), (20), and (21) we obtain: 
𝛼0′ = �𝛾002 + 𝛾012 = 1

√2
, 𝜉0′ = 𝜃00 = 0, 

𝛼1′ = �𝛾102 + 𝛾112 = 1
√2

, 𝜉1′ = 𝜃10 = 𝜋 − 𝜅, 

𝛽0′ = �𝛾002 + 𝛾102 = 1
√2

, 𝜁0′ = 𝜃00 = 0, 

𝛽1′ = �𝛾012 + 𝛾112 = 1
√2

, 𝜁1′ = 𝜃01 = 𝜅. 

This gives |�𝝋𝐴
′ ⟩� = 1

√2
|�0⟩� − 𝑒−𝑖𝜅

√2
|�1⟩�, |�𝝋𝐵

′ ⟩� = 

= 1
√2

|�0⟩� + 𝑒𝑖𝜅

√2
|�1⟩� and 𝑖|�𝝋𝐴

′ ⟩�|�𝝋𝐵
′ ⟩� = 

= 𝑖 �1
2

|�00⟩� + + 𝑒𝑖𝜅

2
|�01⟩� − 𝑒−𝑖𝜅

2
|�10⟩� − 1

2
|�11⟩�� ≠

≠ 𝑖|�𝝋⟩� = |�𝝋�⟩� for any 𝜅. Finally, we conclude 
that |�𝝋�⟩� is not separable. ▲ 
 
7. Conclusions 
 
The formula (28) imposes a necessary condition 
on phase shifts of quantum probability 
amplitudes for separable states. It means that, in 
order to prove that some quantum state is not 
separable (𝑑1-𝑑2-separable) it may suffice to 
show that, for some 𝑘,𝑘′, 𝑙, 𝑙′, (28) does not 
hold. 
 
Example 4 
Let a quantum state be as in example 3. We have 
𝜃00 = 𝜃11 = 0, 𝜃10 = 𝜋 − 𝜅, and 𝜃01 = 𝜅.  
If the state was separable, formula (28) would 
hold and 𝜃10 − 𝜃00 =2𝜋 𝜃11 − 𝜃01 (𝑘 = 1,𝑘′ = 
= 0, 𝑙 = 0, 𝑙′ = 1), that is 𝜋 − 𝜅 =2𝜋 − 𝜅, which 
is equivalent to 𝜋 =2𝜋 0. But this is not the 
case, which, in this simple manner, shows that 
the state in question is not separable. ▲ 
 

Similarly, independently of the phase shifts, 
it is required for a separable state that the moduli 
of its amplitudes hold 𝛾𝑘𝑙 = 𝛼𝑘′ 𝛽𝑙′, where 𝛼𝑘′  and 
𝛽𝑙′ – as per (18) and (19), respectively. 
 
Example 5 
Let a quantum state be as in example 3. We have 
𝛾00 = 1

√2
, 𝛾01 = 0, 𝛾10 = 0, and 𝛾11 = −𝑖

√2
. Next, 

𝛼0′ = 𝛼1′ = 𝛽0′ = 𝛽1′ = 1
√2

. Since, for instance, 
1
2

= 𝛼0′ 𝛽1′ ≠ 𝛾01 = 0, we conclude quickly that 
the state in question is not separable. ▲ 
 

This paper has shown a computably easy 
and straightforward routine to test whether 
quantum states of some special form are 
separable (inner quantum states). Unlike  
a system of equations that usually needs to be 
solved for separability in a tricky way, this one 
involves only some mechanical calculations. 
 
Example 6 
Let a quantum state |�𝝋⟩� = 1

√2
|�00⟩�+ 1

√2
|�11⟩�.  

We are looking for two states |�𝜑𝐴⟩� = 𝑎0|�0⟩� + 
+𝑎1|�1⟩� and |�𝜑𝐵⟩� = 𝑏0|�0⟩�+ 𝑏1|�1⟩� such that 
|�𝝋⟩� = |�𝜑𝐴⟩�|�𝜑𝐵⟩� = [𝑎0𝑏0;𝑎0𝑏1;𝑎1𝑏0;𝑎1𝑏1]𝑇. 
This gives the following system of equations: 
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⎩
⎪
⎨

⎪
⎧𝑎0𝑏0 = 1

√2
𝑎0𝑏1 = 0
𝑎1𝑏0 = 0
𝑎1𝑏1 = 1

√2

�  

The reasoning about the solution for the above 
system requires some idea as this is not a 
“mechanical” process in any way. That is, there 
exists no direct formula to decide whether it has 
any solution or not and each particular case 
needs specific deduction. Though, the first of the 
above equations implies that, either 𝑎0 ≠ 0 or 
𝑏0 ≠ 0. If the former takes place, then the 
second equation in turn implies that 𝑏1 = 0, but 
this contradicts what results from the fourth 
equation. Then, maybe, 𝑏0 ≠ 0, but if so, then 
the third equation implies that 𝑎1 = 0, which 
again contradicts what results from the fourth 
equation. We conclude that there is no solution 
for this system of equations and hence the state 
|�𝝋⟩� is not separable. ▲ 
 
Example 7 
Let a quantum state |�𝝋⟩� = 1

√3
|�00⟩�+ 1

√6
|�01⟩� +

+ 1
√6

|�10⟩� + 1
√3

|�11⟩�. Again, we are looking for 
two states |�𝜑𝐴⟩� = 𝑎0|�0⟩� + 𝑎1|�1⟩� and |�𝜑𝐵⟩� = 
= 𝑏0|�0⟩�+ 𝑏1|�1⟩� such that |�𝝋⟩� = |�𝜑𝐴⟩�|�𝜑𝐵⟩� = 
= [𝑎0𝑏0;𝑎0𝑏1;𝑎1𝑏0;𝑎1𝑏1]𝑇, thus giving us the 
system: 

⎩
⎪⎪
⎨

⎪⎪
⎧𝑎0𝑏0 = 1

√3

𝑎0𝑏1 = 1
√6

𝑎1𝑏0 = 1
√6

𝑎1𝑏1 = 1
√3

�  

Since 𝑎0𝑏0 ≠ 0 and 𝑎1𝑏1 ≠ 0 we conclude that 
𝑎0,𝑎1,𝑏0,𝑏1 ≠ 0. From the first two equations 

we derive 𝑏0
𝑏1

= 𝑎0𝑏0
𝑎0𝑏1

=
1
√3
1
√6

= √2. From the last 

two ones we derive 𝑏0
𝑏1

= 𝑎1𝑏0
𝑎1𝑏1

=
1
√6
1
√3

= 1
√2
≠ √2. 

This contradiction shows that state |�𝝋⟩� cannot be 
separable. ▲ 

The last two examples show that sometimes 
a particular case of a system of equations needs  
a specific reasoning about its solution. In 
essence, there is no general “prescription” on 
how to solve such systems. However, the 
formulas shown in this paper can give a tool to 
check for separability in a simple way. 

Interested reader is referred for further 
reading on Schmidt decomposition to [1], [2], 
[4], [6], and in particular to [3], where the links 
between Schmidt decomposition and singular 
value decomposition were shown. The latter is 
described itself in [7]. These two decompositions 
are more sophisticated tools that would help 
testing the quantum state entanglement. 
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O pewnych przypadkach szczególnych stanu układu kwantowego  
w testowaniu jego rozkładalności 

 
P.A. RYSZAWA 

 
Niniejszy artykuł prezentuje prosty algorytm obliczeniowy na określanie, czy dany stan kwantowy, w pewnej 
szczególnej postaci, jest rozkładalny wg zadanego podziału zbioru kubitów na dwie części. Tak więc, mając 
podzielony zbiór kubitów na dwa, odpowiadamy na pytanie: czy oryginalny stan kwantowy ma postać 
rozkładalną jako iloczyn tensorowy pewnych dwóch innych stanów kwantowych, które zostały utworzone  
w oparciu o kubity z każdego z dwóch w/w podzbiorów? 
 

Słowa kluczowe: obliczenia kwantowe, rejestr kwantowy, splątanie kwantowe, rozkładalność stanów 
kwantowych. 
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