PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Kinetics of cometabolic biodegradation of 4-chlorophenol and phenol by stenotrophomonas maltophilia KB2

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The cometabolic biodegradation of 4-Chlorophenol (4-CP) by the Stenotrophomonas maltophilia KB2 strain in the presence of phenol (P) was studied. In order to determine the kinetics of biodegradation of both substrates, present alone and in cometabolic systems, a series of tests was carried out in a batch reactor changing, in a wide range, the initial concentration of both substrates. The growth of the tested strain on phenol alone was described by Haldane kinetic model (mm = 0:9 1/h, Ksg = 48:97 gg/m3, KIg = 256:12 gg/m3, Yxg = 0:5715). The rate of 4-CP transformation by resting cells of KB2 strain was also described by Haldane equation and the estimated parameters of the model were: kc = 0:229 gc=gxh, Ksc = 0:696 gc=m3, KIc = 43:82 gc=m3. Cometabolic degradation of 4-CP in the presence of phenol was investigated for a wide range of initial 4-CP and phenol concentrations (22–66 gc/m3 and 67–280 gg/m3 respectively). The experimental database was exploited to verify the two kinetic models: CIModel taking only the competitive inhibition into consideration and a more universal CNIModel considering both competitive and non-competitive inhibition. CNIModel approximated experimental data better than CIModel.
Słowa kluczowe
Rocznik
Strony
395–--410
Opis fizyczny
Bibliogr. 57 poz.
Twórcy
autor
  • Polish Academy of Sciences, Institute of Chemical Engineering, Bałtycka 5, 44-100 Gliwice, Poland
autor
  • Polish Academy of Sciences, Institute of Chemical Engineering, Bałtycka 5, 44-100 Gliwice, Poland
autor
  • Polish Academy of Sciences, Institute of Chemical Engineering, Bałtycka 5, 44-100 Gliwice, Poland
autor
  • University of Silesia in Katowice, Faculty of Biology and Environmental Protection, Department of Biochemistry, Jagiellońska 28, 40-032 Katowice, Poland
autor
  • University of Opole, Department of Process Engineering, Dmowskiego 7-9, 45-365 Opole, Poland
Bibliografia
  • 1. Agarry S.E., Solomon B.O., 2008. Kinetics of batch microbial degradation of phenols by indigenous Pseudomonas fluorescence. Int. J. Environ. Sci. Tech., 5, 223–232 DOI: 10.1007/BF03326016.
  • 2. Aktas Ö., 2012. Effect of S0/X0 ratio and acclimation on respirometry of activated sludge in the cometabolic biodegradation of phenolic compounds. Bioresour. Technol., 111, 98–104. DOI: 10.1016/j.biortech.2012.02.027.
  • 3. Alvarez-Cohen L., Speitel Jr. G.E., 2001. Kinetics of aerobic cometabolism of chlorinated solvents. Biodegradation, 12, 105–126. DOI: 10.1023/A:1012075322466.
  • 4. Arora P.K., Bae H., 2014. Bacterial degradation of chlorophenols and their derivatives. Microb. Cell Fact., 13, 31. DOI: 10.1186/1475-2859-13-31.
  • 5. Arutchelvan A., Kanakasabai V., Nagarajan S., Muralikrishnan V., 2005. Isolation and identification of novel high strength phenol degrading bacterial strains from phenol formaldehyde resin manufacturing industrial wastewater. J. Hazard. Mater., 27, 238–243. DOI: 10.1016/j.jhazmat.2005.04.043.
  • 6. Aryal M., Liakopoulou-Kyriakides M., 2015. Phenol degradation in aqueous solutions by Pseudomonas sp. isolated from contaminated soil of mining industry. J. Water Sustainability, 5, 45–57. DOI: 10.11912/jws.2015.5.2.45-57.
  • 7. Bae H.S., Lee J.M., Kim Y.B., Lee S.T., 1996. Biodegradation of the mixtures of 4-chlorophenol and phenol by Comamonas testosteroni CPW301. Biodegradation, 7, 463–469. DOI: 10.1007/BF00115293.
  • 8. Bajaj M., Gallert C., Winter J., 2009. Phenol degradation kinetics of an aerobic mixed culture. Biochem. Eng. J., 46, 205–209. DOI: 10.1016/j.bej.2009.05.021.
  • 9. Busca G., Berardinelli S., Resini C., Arrighi L., 2008. Technologies for the removal of phenol from fluid streams: A short review of recent developments. J. Hazard. Mater., 160, 265–288. DOI: 10.1016/j.jhazmat.2008.03.045.
  • 10. Criddle C.S., 1993. The kinetics of cometabolism. Biotechnol. Bioeng., 41, 1048–1056. DOI: 10.1002/bit.2604 11107.
  • 11. Chang W., Criddle C.S., 1997. Experimental evaluation of a model for cometabolizm: prediction of simultaneous degradation of trichloroethylene and methane by a methanotrophic mixed culture. Biotechnol. Bioeng., 56, 492–501. DOI: 10.1002/(SICI)1097-0290(19971205)56:5<492::AID-BIT3>3.0.CO;2-D.
  • 12. Chen Y-M., Lin T-F., Huang C., Lin J-C., 2008. Cometabolic degradation kinetics of TCE and phenol by Pseudomonas putida. Chemosphere, 72, 1671–1680. DOI: 10.1016/j.chemosphere.2008.05.035.
  • 13. Danis T.G., Albanis T.A., Petrakis D.E., Pomonis P.L., 1998. Removal of chlorinated phenols from aqueous solutions by adsorption on alumina pillared clays and mesoporous alumina phosphates. Water Res., 32, 295–302. DOI: 10.1016/S0043-1354(97)00206-6.
  • 14. De Los Cobos-Vasconcelos D., Santoyo-Tepole F., Juarez-Ramirez C., Ruiz-Ordaz N., Galindez-Mayer C.J.J., 2006. Cometabolic degradation of chlorophenols by a strain of Burkholderia in fed-batch culture. Enzyme Microb. Technol., 40, 57–60. DOI: 10.1016/j.enzmictec.2005.10.038.
  • 15. Elango V., Kurtz H.D., Freedman D.L., 2011. Aerobic cometabolism of trichloroethane and cis-dichloroethane with benzene and chlorinated benzenes as growth substrates. Chemosphere, 84, 247–253. DOI.10.1016/j.chemosphere. 2011.04.007.
  • 16. Ely R.L., Williamson K.J., Guenther R.B., Hyman M.R., Arp D.J., 1995. A cometabolic kinetics model incorporating enzyme inhibition, inactivation, and recovery. I. Model development, analysis, and testing. Biotechnol. Bioeng., 46, 218–231. DOI: 10.1002/bit.260460305.
  • 17. Ely R.L., Kenneth J.W., Hyman M.R., Arp D.J.,1997. Cometabolism of chlorinated solvents by nitrifying bacteria: Kinetics, substrate interactions, toxicity effects, and bacterial response. Biotechnol. Bioeng., 54, 520–534. DOI: 10.1002/(SICI)1097-0290(19970620)54:6<520::AID-BIT3>3.0.CO;2-L.
  • 18. Essam T., Amin M.A., El Tayeb O., Mattiasson B., Guieysse B., 2010. Kinetics and metabolic versatility of highly tolerant phenol degrading Alcaligenes strain TW1. J. Hazard. Mater., 173, 783–788. DOI: 10.1016/j.jhazmat. 2009.09.006.
  • 19. Farrell A., Quilty B., 2002. Substrate dependent autoaggregation of Pseudomonas putida CP1 during the degradation of mono-chlorophenols and phenol. J. Indus. Microbiol. Biotechnol., 28, 316–324. DOI: 10.1038/sj/jim/7000.
  • 20. Felshia S.Ch., Karthick N.A., Thilagam R., Chandralekha A., Raghavarao K.S.M.S., Gnanamani A., 2017. Efficacy of free and encapsulated Bacillus lichenformis strain SL10 on degradation of phenol: A comparative study of degradation kinetics. J. Environ. Manage., 197, 373–383. DOI: 10.1016/j.jenvman.2017.04.005.
  • 21. Field J.A., Sierra-Alvarez R., 2008. Microbial degradation of chlorinated benzenes. Biodegradation, 19(4), 463–480. DOI: 10.1007/s10532-007-9155-1.
  • 22. Frascari D., Pinelli D., Nocentini M., Baleani E., Cappelletti M., Fedi S., 2008. A kinetic study of chlorinated solvent cometabolic biodegradation by propane-grown Rhodococcus sp PB1. Biochem. Eng. J., 42, 139–147. DOI: 10.1016/j.bej.2008.06.011.
  • 23. Frascari D., Zannoni A., Pinell D., Nocentini M., 2007. Chloroform aerobic cometabolism by butane-utilizing bacteria in bioaugmented and non-bioaugmented soil/groundwater microcosms. Process Biochem., 42, 1218– 1228. DOI: 10.1016/j.procbio.2007.05.018.
  • 24. Goswami M., Shivaraman N., Singh R.P., 2005. Microbial metabolism of 2-chlorophenol, phenol and p-cresol by Rhodococcus erythropolis M1 in co-culture with Pseudomnas fluorecens P1. Microbiol. Res., 160, 101–109 DOI: 10.1016/j.micres.2004.10.004.
  • 25. Greń I., Guzik U.,Wojcieszyńska D., Łabuzek S., 2008.Molekularne podstawy rozkładu ksenobiotycznych związków aromatycznych. Biotechnologia, 2(81), 58–67 (in Polish).
  • 26. Greń I., Wojcieszyńska D., Guzik U., Perkosz M., Hupert-Kocurek K., 2010. Enhanced biotransformation of mononitrophenols by Stenotrophomonas maltophilia KB2 in the presence of aromatic compounds of plant origin. World J. Microbiol. Biotechnol., 26, 289–295. DOI.10.1007/s11274-009-0172-6.
  • 27. Guzik, U., Greń, I., Wojcieszyńska, D., Łabuzek, S., 2009. Isolation and characterization of a novel strain of Stenotrophomonas maltophilia possessing various dioxygenases for monocyclic hydrocarbon degradation. Braz. J. Microbiol., 40, 285–291. DOI: 10.1590/S1517-838220090002000014.
  • 28. Hao O.J., Kim M.H., Seagren E.A., Kim H., 2002. Kinetics of phenol and chlorophenol utilization by Acinetobacter species. Chemosphere, 46, 797–807. DOI: 10.1016/S0045-6535(01)00182-5.
  • 29. Hill G.A., Milne B.J., Nawrocki P.A., 1996. Cometabolic degradation of 4-chlorophenol by Alcaligenes eutrophus. Appl. Microbiol. Biotechnol., 46, 163–168. DOI: 10.1007/s002530050799.
  • 30. Horvath R.S., 1972. Microbial co-metabolism and the degradation of organic compounds in nature. Bacteriol. Rev., 36(2), 146–155.
  • 31. Jesus J., Frascari D., Pozdniakowa T., Danko A.S., 2016. Kinetics of aerobic cometabolic biodegradation of chlorinated and brominated aliphatic hydrocarbons: a review. J. Hazard. Mater., 309, 17–52. DOI: 10.1016/ j.jhazmat.2016.07.065.
  • 32. Jain A.K., Gupta V.K., Jain S., 2004. Removal of chlorophenols using industrial wastes. Environ. Sci. Technol., 38, 1195–1200. DOI: 10.1021/es034412u.
  • 33. Jiang Y., Ren N., Cai X.,Wu D., Qiao L. Lin S., 2008. Biodegradation of phenol and 4-chlorophenol by the mutant strain CTM 2. Chin. J. Chem. Eng., 16, 796–800. DOI: 10.1016/S1004-9541(08)60158-5.
  • 34. Jiang Y.,Wen J., Lan L. Hu Z., 2007. Biodegradation of phenol and 4-chlorophenol by the yeast Candida tropicalis. Biodegradation, 18, 719–729. DOI: 10.1007/s10532-007-9100-3.
  • 35. Kim J.H., Oh K.K., Lee S.T., Kim S.W., Hong S.I., 2002. Biodegradation of phenol and chlorophenols with defined mixed culture in shake-flasks and a packed bed reactor. Process Biochem., 37, 1367–1373. DOI: 10.1016/S0032-9592(02)00007-9.
  • 36. Kim M.H., Hao O.J., 1999. Cometabolic degradation of chlorophenols by Acinetobacter species. Wat. Res., 33, 562–574. DOI: 10.1016/S0043-1354(98)00228-0.
  • 37. Krastanov A., Alexieva Z., Yemendzhiev H., 2013. Microbial degradation of phenol and phenolic derivatives. Eng. Life Sci., 13, 76–87. DOI: 10.1002/elsc.201100227.
  • 38. Lee C.-Y., Lee Y.-P., 2007. Degradation of 4-chlorophenol by enriched mixed cultures utilizing phenol and glucose as added growth substrate. World J. Microb. Biot., 23, 383–391. DOI: 10.1007/s11274-006-9235-0.
  • 39. Leontievsky A.A., Mysoedova n.m., Baskunov B.P., Evans C.S., Golovleva L.A., 2000. Transformatin of 2,4,6- trichlorophenol by the white rot fungi Panus tigrinus and Coriolus versicolor. Biodegradation, 11, 331–340. DOI: 10.1023/A:1011154209569.
  • 40. Liu J., Jia X.,Wen J., Zhou Z., 2012. Substrate interactions and kinetics study of phenolic compounds biodegradation by Pseudomonas sp. cbp1-3. Biochem. Eng. J., 67, 156–166. DOI: 10.1016/j.bej.2012.06.008.
  • 41. Loh K.-Ch., Wu T., 2006. Cometabolic transformation of 2-chlorophenol and 4-chlorophenol in the presence of phenol by Pseudomonas putida. Can. J. Chem. Eng., 84, 356–367. DOI: 10.1002/cjce.5450840312.
  • 42. Margesin R., Fonteyne P.A., Redl B., 2005. Low-temperature biodegradation of high amounts of phenol by Rhodococcus sp. and Basidiomycetous yeasts. Res. Microbiol., 156, 68–75. DOI: 10.1016/j.resmic.2004.08.002.
  • 43. Monsalvo V.M., Mohedano A.F., Casas J.A., Rodríguez J.J., 2009. Cometabolic biodegradation of 4-chlorophenol by sequencing batch reactors at different temperatures. Bioresource Technol., 100, 4572–4578. DOI: 10.1016/j.biortech.2009.04.044.
  • 44. Saéz P.B., Rittmann B.E., 1993. Biodegradation kinetics of a mixture containing a primary substrate (phenol) and an inhibitory co-metabolite (4-chlorophenol). Biodegradation, 4, 3–21. DOI: 10.1007/BF00701451.
  • 45. Sahinkaya E., Dilek F.B., 2005. Biodegradation of 4-chlorophenol by acclimated and unacclimated activated sludge – Evaluation of biokinetic coefficients. Environ. Res., 99, 243–252. DOI: 10.1016/j.envres.2004.11.005.
  • 46. Sam S. P., Ng S.L., Rohana A., 2018. Kinetics of biodegradation of phenol and p-nitrophenol by acclimated activated sludge. J. Phys. Sci., 29(Supp. 1), 107–113. DOI: 10.21315/jps2018.29.s1.14.
  • 47. Shourian M., Noghabi K.A., Zahiri H.S., Bagheri T., Karbalaei R., Mollaei M., Rad I., Ahadi S., Raheb J., Abbasi H., 2009. Efficient phenol degradation by a newly characterized Pseudomonas sp. SA01 isolated from pharmaceutical wastewaters. Desalination, 246, 577–594. DOI: 10.1016/j.desal.2008.07.015.
  • 48. Singh S., Singh B.B., Chandra R., 2009. Biodegradation in batch culture by pure mixed strains of Paenibacillus sp. and Bacillus cereus. Pol. J. Microbiol., 58, 319–325.
  • 49. Sinha P.K., Sinha A., Das M., 2011. Microbial removal of phenol and p-chlorophenol from industrial waste water using Rhodococcus sp. RSP8 and its growth kinetic modeling. J. Water Resource Prot., 3, 634–642. DOI: 10.4236/jwarp.2011.38073.
  • 50. Tobajas M., Monsalvo V.M., Mohedano A.F., Rodriguez J.J., 2012. Enhancement of cometabolic biodegradation of 4-chlorophenol induced with phenol and glucose as carbon sources by Comamonas testosteroni. J. Environ. Manage., 95, 116–121. DOI: 10.1016/j.jenvman.2010.09.030.
  • 51. Wang J., Ma X., Liu S., Sun P., Fan P., Xia Ch., 2012. Biodegradation of phenol and 4-chlorophenol by Candida tropicalis. W. Procedia Environ. Sci., 16, 299–303. DOI: 10.1016/j.proenv.2012.10.042.
  • 52. Wang Q., Li Y., Li J., Wang Y., Wang C., Wang P., 2015. Experimental and kinetic study on the cometabolic biodegradation of phenol and 4-chlorophenol by psychrotrophic Pseudomonas putida LY1. Environ. Sci. Pollut. Res. Int., 22, 565–573. DOI: 10.1007/s11356-014-3374-x.
  • 53. Wang S.J., Loh K.C., 1999. Modeling the role of metabolic intermediates in kinetics of phenol biodegradation. Enzyme Microb. Tech., 25, 177–184. DOI: 10.1016/S0141-0229(99)00060-5.
  • 54. Wang S.J., Loh K.C., 2000. New cell growth pattern on mixed substrates and substrate utilization in cometabolic transformation of 4-chlorophenol. Water Res. 34, 3786–3794. DOI: 10.1016/S0043-1354(00)00144-5.
  • 55. Wojcieszyńska D., Greń I., Łabuzek S., Respondek M., 2007. Specyficzność substratowa oraz wrażliwość monooksygenazy fenolowej ze szczepu Stenotrophomonas maltophilia KB2 a jej potencjalne zastosowanie w bioremediacji środowiska. Biotechnologia, 2 (77), 181–191 (in Polish).
  • 56. Wojcieszyńska D., Hupert-Kocurek K., Gre´n I., Guzik U., 2011. High activity catechol 2,3-dioxygenase from the cresols-degrading Stenotrophomonas maltophilia strain KB2. International Biodeterioration and Biodegradation, 65, 853–858. DOI: 10.1016/j.ibiod.2011.06.006.
  • 57. Zhang Y., Lu D., Ju T., Wang L., Lin Sh., Zhao Y., Wang Ch., He H., Du Y. 2013. Biodegradation of phenol using Bacillus cereus WJ1 and evaluation of degradation efficiency based on a graphene modified electrode. Int. J. Electrochem. Sci., 8, 504–519.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e57e4def-6ab0-4be3-b584-f8674ef739fc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.