Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper a finite element method with 2D beam elements is derived for flexible planar linkages for the case of mutual dependence between rigid and elastic motions. For this purpose both rigid body and elastic degrees of freedom are considered as generalized coordinates during the derivation procedure and are substituted to the Gibbs-Appel equation. This procedure requires formulation of the shape functions for rigid body motion of finite elements. The numerical calculations are conducted for the case of planar slidercrank mechanism with the goal of determining the influence of the vibration of links on the mechanism motion. The results of numerical simulation show that for transient analysis the influence for large displacement mechanism motion has limited impact.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
93--100
Opis fizyczny
Bibliogr. 7 poz.
Twórcy
autor
- Warsaw University of Technology, Institute of Machine Design Fundamentals
Bibliografia
- 1. Abbas L.K., Zhou Q., Bestle D., Rui X. (2017): A unified approach for treating linear multibody systems involving flexible beams, Mechanism and Machine Theory, 107, pp. 107-209.
- 2. Hać M., Łazęcki J. (2016): Rigid-body motion of planar mechanisms by finite element method with comparison to the multibody approach, Machine Dynamics Research, vol. 40 nr 2, s. 1-10.
- 3. Hać M. (2013): “On Equations of Motion of Elastic Linkages by FEM”, Mathematical Problems in Engineering, art. ID 648706, 10 pages, doi: 10.1155/2013/648706
- 4. Nagarajan S., Turcic D.A. (1990): Lagrangian formulation of the equations of motion for elastic mechanisms with mutual dependence between rigid body and elastic motions, Part I: element level equations, ASME J. Dynamic Systems, Measurement, and Control, 112: pp. 203-214.
- 5. Nagarajan S., Turcic D.A. (1990): Lagrangian formulation of the equations of motion for elastic mechanisms with mutual dependence between rigid body and elastic motions, Part II: system equations, ASME J. Dynamic Systems, Measurement, and Control, 112: pp. 215-214
- 6. Turcic D.A., Midha A. (1984): Generalized Equations of Motion for the Dynamic Analysis of Elastic Mechanism Systems, ASME J. Dynamic Systems, Measurement, and Control, 106, 243-248.
- 7. Yang Z., Sadler J.P. (2000): On issues of elastic-rigid coupling in finite element modeling of high-speed machines. Mechanism and Machine Theory, 32: pp. 71-82.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e5744655-54da-4313-8e47-f7032211aba1