PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

The activity of fused-iron catalyst doped with lithium oxide for ammonia synthesis

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The iron catalyst precursor promoted with Al2O3, CaO, and Li2O was obtained applying the fusing method. Lithium oxide forms two phases in this iron catalyst: a chemical compound with iron oxide (Li2Fe3O4) and a solid solution with magnetite. The catalyst promoted with lithium oxide was not fully reduced at 773 K, while the catalyst containing potassium was easily reducible at the same conditions. After reduction at 873 K the activity of the catalyst promoted with lithium oxide was 41% higher per surface than the activity of the catalyst promoted with potassium oxide. The concentration of free active sites on the surface of the catalyst containing lithium oxide after full reduction was greater than the concentration of free active sites on the surface of the catalyst promoted with potassium oxide.
Słowa kluczowe
Rocznik
Strony
78--83
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
  • West Pomeranian University of Technology, Szczecin, Institute of Materials Science and Engineering, Piastów 19, 70-310 Szczecin, Poland
  • West Pomeranian University of Technology, Szczecin, Institute of Inorganic Chemical Technology and Environmental Engineering, Pułaskiego 10, 70-322 Szczecin, Poland
autor
  • West Pomeranian University of Technology, Szczecin, Institute of Inorganic Chemical Technology and Environmental Engineering, Pułaskiego 10, 70-322 Szczecin, Poland
Bibliografia
  • 1. Jennings, J.R. (1991). Catalytic Ammonia Synthesis: Fundamentals and Practice. Plenum Press. New York.
  • 2. Kuzniecov, L.D., Dmitrienko, L.M., Rabina, P.D. & Sokolinski, U.A. (1982). Sintiez Ammiaka. Chimia, Moscow.
  • 3. Aika, K. & Tamaru, K., in: Nielsen, A. (Ed.). (1995). Ammonia. Catalysis and Manufacture, Springer Verlag, Berlin.
  • 4. Ertl, G. (2009). Reactions at Solid Surfaces. Wiley, US
  • 5. Liu, H., Xu, R., Jiang, Z., Hu, Z., Li, Y. & Li, X. (1996). US Patent 5, 846, 507 (2002) Europea Patent. 0,763,379 and (2002) Germany Patent 69430143T2.
  • 6. Liu, H.Z., Li, X.N. & Hu, Z.N. (1996) Development of novel low temperature and low pressure ammonia synthesis catalyst. Appl. Catal. A. 142, 209–222. DOI: 10.1016/0926-860X(96)00047-6.
  • 7. Liu, H.Z. & Li, X.N. (1997). Relationship between Precursor Phase Composition and Performance of Catalyst for Ammonia Synthesis. Ind. Eng. Chem. Res. 36, 335–342. DOI:10.1021/IE960072S.
  • 8. Pernicone, N., Ferrero, F., Rossetti, I., Forni, L., Canton, P., Riello, P., Fagherazzi, G., Signoretto, M. & Pinna, F. (2003). Wustite as a new precursor of industrial ammonia synthesis catalysts. Appl. Catal. A. 251, 121–129. DOI: 10.1016/S0926-860X(03)00313-2.
  • 9. Lendzion-Bieluń, Z., Arabczyk, W. & Figurski, M. (2002). The effect of the iron oxidation degree on distribution of promoters in the fused catalyst precursors and their activity in the ammonia synthesis reaction. Appl. Catal. A. 227, 255–263. DOI: 10.1016/S0926-860X(01)00938-3.
  • 10. Ertl, G., in: Jennings, J.R. (Ed.). (1991). Catalytic Ammonia Synthesis: Fundamentals and Practice. Plenum Press. Chapter 3. New York.
  • 11. Arabczyk, W., Narkiewicz, U. & Moszyński, D. (1999). Double-Layer Model of the Fused Iron Catalyst for Ammonia Synthesis. Langmuir 15(18), 5785–5789. DOI: 10.1021/la981132x.
  • 12. Ertl, G. & Vac, J. (1983). Sci. Technol. A1 (2), 1247–1253.
  • 13. Arabczyk, W., Narkiewicz, U. & Moszyński, D. (1999). Influence of potassium/oxygen layer on properties of iron surfaces. Appl. Catal. 182, 379–384. DOI: 10.1016/S0926-860X(99)00034-4.
  • 14. Strongin, D.R., Somorjai, G.A. & Catal, J. (1988). The effects of potassium on ammonia synthesis over iron singlecrystal surface. J. Catal. 10, 951–960. DOI: 10.1016/0021-9517(88)90184-4.
  • 15. Mross, W.D. (1983). Alkali doping in heterogeneous catalysis. Catal. Rev. Sci. Eng. 25(4) 591–637.
  • 16. Aleksicz, B., Mitov, J.G., Klisurski, D.G., Pietranowicz N.A., Jovanovic, N.N., Bogdanov, S.S. (1984). Comparative investigations of the effect of alkaline promoters on the activity of ammonia synthesis catalysts at atmospheric and elevated pressures. Glas. Hem. Drus. Beograd. 49, 477–483.
  • 17. Bosch, H., Van Omen, J.G., Gellings, P.J. (1985). On the role of alkali metals in ammonia synthesis. Appl. Catal. 18, 405–408. DOI:10.1016/S0166-9834(00)84017-8.
  • 18. Rarog, W., Kowalczyk, Z., Sentek, J., Skladanowski, D. & Zielinski, J. (2000). Effect of K, Cs and Ba on the kinetics of NH3 synthesis over carbon- based ruthenium catalysts. Catal. Lett. 68, 163–168.
  • 19. Aika, K. & Shimazaki, K. (1985). Support and promoter effect of ruthenium catalyst I. Characterization of alkalipromoted ruthenium/alumina catalysts for ammonia synthesis. J. Catal. 92, 296–304. DOI: 10.1016/0021-9517(85)90264-7.
  • 20. Arabczyk, W., Jasinska, I. & Jędrzejewski, R. (2009). Iron catalyst for ammonia synthesis doped with lithium oxide. Catal. Comm. 10, 1821–1823. DOI: 10.1016/j.catcom.2009.06.003.
  • 21. Arabczyk, W., Ziebro, J., Kałucki, K., Świerkowski, R. & Zakrzewska, M. (1996). Laboratory scale plant for continuous fusing of iron catalysts. Chemik 1, 22–24. (In Polish).
  • 22. Uvarov, V. & Popov, I. (2007). Metrological characterization of X-ray diffraction methods for determination of crystallite size in nano-scale materials. Mater. Charac. 58, 883–891. DOI: 10.1016/j.matchar.2006.09.002.
  • 23. Arabczyk, W. & Lendzion-Bieluń, Z. (2001). Method for determination of the chemical composition of phases of the iron catalyst precursor for ammonia synthesis. Appl. Catal. 207, 37–41. DOI: 10.1016/S0926-860X(00)00614-1.
  • 24. Tiemkin, M. & Pyżew, W. (1939). Kinetics of the synthesis of ammonia on promoted iron catalysts. Phys. J. Chem. 13, 851. USSR.
  • 25. Lendzion-Bieluń, Z., Arabczyk, W. & Figurski, M. (2002). The effect of the iron oxidation degree on distribution of promotors in the fused catalyst precursors and their activity in the ammonia synthesis reaction. Appl. Cat. 227, 255–263. DOI: 10.1016/S0926-860X(01)00938-3.
  • 26. Figurski, M.J., Arabczyk, W., Lendzion-Bieluń, Z. & Lenart, S. (2004). Investigation of manganese-doped iron ammonia synthesis catalysts. Appl. Cat. 266(1), 11–20. DOI:10.1016/j.apcata.2004.01.032.
  • 27. Arabczyk, W., Jasińska, I. & Pelka, R. (2011). Measurements of the relative number of active sites on iron catalyst for ammonia synthesis by hydrogen desorption. Catal. Today 169, 97–101. DOI: 10.1016/j.cattod.2010.09.003.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e571a86d-28e0-4043-a4ae-da359d4762ed
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.