PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Physiological perspective of starch as a carbon source in two varieties of Carya illinoinensis Koch in Northern Mexico

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The study took as a purpose to determine the Total Carbon (TC) content in the biomass, the Starch Carbon fraction (SC) and its annual dynamics in the biomass of perennial organs (stem and root) in adult trees of two of walnut tree (Carya illinoinensis). Four adult Western and Wichita tree stem and root samples were carried out monthly for a whole year. The TC was determined with an elemental analyser and the SC has gotten based on the molecular mass of the glucose (0.40 gC/gGlucose). t-Student test was performed between varieties per organ for the comparison of TC and SC through the program SPSS 15.0 with a significance of p ≤ 0.05. The results in Western variety were 160.02 kg TC and 4.90 kg SC to 7.54 kg SC in the stem; 64.58 kg TC and 1.74 kg SC to 3.09 kg SC in the root; in Wichita variety were presented 119.72 kg TC and 4.49 kg SC to 6.83 kg SC in the stem; 45.72 kg TC and 1.35 kg SC to 2.75 kg SC in the root. The root was the organ where the greatest amount of SC was stored in relation to the stem, due this latter constitutes a transport organ. Temperature has a marked inversely proportional influence on the accumulation of SC in both varieties. Global solar radiation and solar radiation proportionally influence the accumulation of SC.
Słowa kluczowe
Rocznik
Strony
443--452
Opis fizyczny
Bibliogr. 38 poz., tab., wykr.
Twórcy
  • Graduate Program in Agricultural Production, Antonio Narro Autonomous Agrarian University, Periférico Raúl López Sánchez s/n. Col. Valle Verde, CP 27054 Torreón, Coahuila, México
  • Forest Biology and Ecology Laboratory, Biological Sciences Faculty, Juárez University of the State of Durango, Av. Universidad s/n. Fracc. Filadelfia
  • INIFAP National Center for Disciplinary Research in the Water-Soil-Plant-Atmosphere Relationship, CP 34079 Gómez Palacio, Durango, México
  • Forest Biology and Ecology Laboratory, Biological Sciences Faculty, Juárez University of the State of Durango, Av. Universidad s/n. Fracc. Filadelfia
  • Department of Natural Resources, Autonomous Agrarian University Antonio Narro, Calz. Antonio Narro 1923, Buenavista, CP 25315 Saltillo, Coahuila, México
Bibliografia
  • [1] Noronha H, Silva A, Dai Z, Gallusci P, Rombolà AD, Delrot S, et al. A molecular perspective on starch metabolism in woody tissues. Planta. 2018;248(3):559-68. DOI: 10.1007/s00425-018-2954-2.
  • [2] Bellasio C, Fini A, Ferrini F. Evaluation of a high throughput starch analysis optimised for wood. PLoS ONE. 2014; 9(2):e86645. DOI: 10.1371/journal.pone.0086645.
  • [3] Dovis VL, Machado EC, Ribeiro RV, Magalhaes-Filho JR, Marchiori PE, Sales CR. Roots are important sources of carbohydrates during flowering and fruiting in ‘Valencia’ sweet orange trees with varying fruit load. Scientia Horticulturae. 2014;174:87-95. DOI: 10.1016/j.scienta.2014.05.011.
  • [4] Thalmann M, Santelia D. Starch as a determinant of plant fitness under abiotic stress. New Phytologist. 2017; 214(3):943-51. DOI: 10.1111/nph.14491.
  • [5] Yepes A, Silveira-Buckeridge M. Respuestas de las plantas ante los factores ambientales del cambio climático global (revisión) [Plant responses to environmental factors of global climate change (review)]. Colombia Forestal. 2011;14(2):213-32. Available from: http://www.scielo.org.co/scielo.php?script=sci_serial&pid=0120-0739&lng=en.
  • [6] Beckles DM, Thitisaksakul M. How environmental stress affects starch composition and functionality in cereal endosperm. Starch/Stärke. 2014;66:58-71. DOI: 10.1002/star.201300212.
  • [7] Streb S, Zeeman SC. Starch metabolism in Arabidopsis. The Arabidopsis Book. 2012;10:e0160. DOI: 10.1199/tab.0160.
  • [8] Savage JA, Clearwater MJ, Haines DF, Klein T, Mencuccini M, Sevanto S, et al. Allocation, stress tolerance and carbon transport in plants: how does phloem physiology affect plant ecology? Plant Cell Environ. 2016;39:709-25. DOI: 10.1111/pce.12602.
  • [9] MacNeill G, Mehrpouyan S, Minow M, Patterson J, Emes I, Emes M. Starch as a source, starch as a sink: the bifunctional role of starch in carbon allocation. J Experon Botany. 2017;68.4433-53. DOI: 10.1093/jxb/erx291.
  • [10] Geiger DR, Shieh WJ. Sink strength: learning to measure, measuring to learn. Plant Cell Environ. 1993; 16:1017-8. DOI: 10.1111/j.1365-3040.1996.tb02048.x.
  • [11] Ciereszko I. Regulatory roles of sugars in plant growth and development. Acta Societatis Botanicorum Poloniae. 2018;87(2):3583. DOI: 10.5586/asbp.3583.
  • [12] Dong S, Beckles D. Dynamic changes in the starch-sugar interconversion within plant source and sink tissues promote a better abiotic stress response. J Plant Physiol. 2019;234-235:80-93. DOI: 10.1016/j.jplph.2019.01.007.
  • [13] Xu J, Li Q, Yang L, Li X, Wang Z, Zhang Y. Changes in carbohydrate metabolism and endogenous hormone regulation during bulblet initiation and development in Lycoris radiata. BMC Plant Biology. 2020;(20):180. DOI: 10.1186/s12870-020-02394-4.
  • [14] Ramirez JA, Handa IT, Posada JM, Delagrange S, Messier C. Carbohydrate dynamics in roots, stems, and branches after maintenance pruning in two common urban tree species of North America. Urban Forestry Urban Greening. 2018;30:24-31. DOI: 10.1016/j.ufug.2018.01.013.
  • [15] Rossouw GC, Smith JP, Barril C, Deloire A, Holzapfel BP. Implications of the presence of maturing fruit on carbohydrate and nitrogen distribution in grapevines under postveraison water constraints. J Amer Soc Horticult Sci. 2017;142(2):71-84. DOI: 10.21273/JASHS03982-16.
  • [16] Coetzee ZA, Walker RR, Deloire AJ, Barril C, Clarke SJ, Rogiers SY. Impact of reduced atmospheric CO2 and varied potassium supply on carbohydrate and potassium distribution in grapevine and grape berries (Vitis vinifera L.). Plant Physiol Biochem. 2017;120:252-60. DOI: 10.1016/j.plaphy.2017.10.008.
  • [17] Rossouw GC, Smith JP, Barril C, Deloire A, Holzapfel BP. Carbohydrate distribution during berry ripening of potted grapevines: impact of water availability and leaf-to-fruit ratio. Scientia Horticulturae. 2017;216:215-25. DOI: 10.1016/j.scienta.2017.01.008.
  • [18] Oswald SW, Aubrey DP. Xeric tree populations exhibit delayed summer depletion of root starch relative to mesic counterparts. Forests. 2020;11:1026. DOI: 10.3390/f11101026.
  • [19] Gilson A, Barthes L, Delpierre N, Dufrêne E, Fresneau C, Bazot S. Seasonal changes in carbon and nitrogen compound concentrations in a Quercus petraea chronosequence. Tree Physiol. 2014;34:716-29. DOI: 10.1093/treephys/tpu060.
  • [20] Chimento C, Amaducci S. Characterization of fine root system and potential contribution to soil organic carbon of six perennial bioenergy crops. Biomass Bioenergy. 2015;83:116-22. DOI: 10.1016/j.biombioe.2015.09.008.
  • [21] Rytter RM. The potential of willow and poplar plantations as carbon sinks in Sweden. Biomass Bioenergy. 2012;36:86-95. DOI: 10.1016/j.biombioe.2011.10.012.
  • [22] Tognetti R, Johnson JD, Michelozzi M, Raschi A. Response of foliar metabolism in mature trees of Quercus pubescens and Quercus ilex to long term elevated CO2. Environ Experimental Botany. 1998;39:233-45. DOI: 10.1016/S0098-8472(98)00013-6.
  • [23] Locosselli GM, Buckeridge MS. Dendrobiochemistry, a missing link to further understand carbon allocation during growth and decline of trees. Trees. 2017;31:1745-58. DOI: 10.1007/s00468-017-1599-2.
  • [24] Henriksson N, Tarvainen L, Lim H, Tor-Ngern P, Palmroth S, Oren R, et al. Stem compression reversibly reduces phloem transport in Pinus sylvestris trees. Tree Physiology. 2015;35(10):1075-85. DOI: 10.1093/treephys/tpv078.
  • [25] IMTA. Extractor rápido de información climatológica versión 2.0. (ERIC 2.0). Software. Instituto Mexicano de la Tecnología del Agua. Secretaría del Medio Ambiente y Recursos Naturales. [Mexican Institute of Water Technology. Ministry of the Environment and Natural Resources] 2005. Available from: http://hidrosuperf.imta.mx/sig_eric/.
  • [26] INEGI. Anuario estadístico del estado de Coahuila de Zaragoza. Instituto Nacional de Estadística y Geografía. Aguascalientes, Ags. México [Statistical yearbook of the state of Coahuila de Zaragoza. National Institute of Statistic and Geography. Aguascalientes, Ags. Mexico]. 2012. Available from: https://www.inegi.org.mx/contenidos/productos/prod_serv/contenidos/espanol/bvinegi/productos/nueva_estruc/anuarios_2017/702825095406.pdf.
  • [27] Valenzuela-Nuñez LM, Gérant D, Maillard P, Bréda N, González-Cervantes G, Sánchez-Cohen I. Evidence for a 26kDA vegetative storage protein in the stem sapwood of mature pedunculate oak. Interciencia. 2011;36(2): 142-7. Available from: http://www.redalyc.org/articulo.oa?id=33917765009.
  • [28] Briceño-Contreras EA, Valenzuela-Núñez LM, Espino-Castillo DA, García-De La Peña C, Esparza-Rivera JR, Borja-De La Rosa A. Content of starch in walnut organs (Carya illinoensis Koch) in two phenological stages. Revista Mexicana de Ciencias Agrícolas. 2018;1(20):4161-73. DOI: 10.29312/remexca.v0i20.987.
  • [29] Ebell LF. Specific total starch determinations in conifer tissues with glucose oxidase. Phytochemistry. 1969; 8(1):25-36. DOI: 10.1016/S0031-9422(00)85790-8.
  • [30] Drexhage M, Huber F, Colin F. Comparison of radial increment and volume growth in stems and roots of Quercus petraea. Plant Soil. 1999;217:101-10. DOI: 10.1023/A:1004647418616.
  • [31] Bruciamacchie M. Structure, croissance et biomasse des régénerations naturelles de chêne rouvre (Quercus petraea Liebl.) [Structure, growth and biomass of natural regenerations of sessile oak (Quercus petraea Liebl.)] E.N.LT.E.F., Nogent-sur-Vernisson; Mémoire de fin d’études. INRA, Station de Sylviculture, Nancy, 82/02. 1982. Available from: https://belinra.inrae.fr/index.php?lvl=notice_display&id=55870.
  • [32] Aguirre-Calderón OA, Jiménez-Pérez J. Carbon content evaluation in southern forests of Nuevo León. Revista Mexicana de Ciencias Forestales. 2011;2(6):73-84. Available from: https://www.scielo.org.mx/pdf/remcf/v2n6/v2n6a7.pdf.
  • [33] Thomas SC, Martin AR. Carbon content of tree tissues: A synthesis. Forests. 2012;3:332-52. DOI: 10.3390/f3020332.
  • [34] Martin AR, Thomas SC. A reassessment of carbon content in tropical trees. PLoS ONE. 2011;6(8):e23533. DOI: 10.1371/journal.pone.0023533.
  • [35] Mendez-Estrella R, Romo-Leon JR, Castellanos AE. Mapping changes in carbon storage and productivity services provided by riparian ecosystems of semi-arid environments in Northwestern Mexico. ISPRS Int J Geo-Information. 2017;6(10):298. DOI: 10.3390/ijgi6100298.
  • [36] Zomer RJ, Neufeldt H, Xu J, Ahrends A, Bossio D, Trabucco A, et al. Global tree cover and biomass carbon on agricultural land: The contribution of agroforestry to global and national carbon budgets. Scientific Reports. 2016;6:29987. DOI: 10.1038/srep29987.
  • [37] Ohlde GW, Stadtlander T, Becker K. Biomass production and carbon sequestration by cultivation of trees under hyperarid conditions using desalinated seawater (sewage water). J Agricult Food Development. 2019;(5):33-42. DOI: 10.30635/2415-0142.2019.05.4.
  • [38] Pilkington SM, Encke B, Krohn N, Höhne M, Stitt M, Pyl ET. Starch degradation and carbon demand. Plant Cell Environ. 2015;38:157-71. DOI:10.1111/pce.12381.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e571225c-7ec1-404d-8513-bd95a75326b8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.