PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Time-frequency analysis of accelerometry data for seizure detection

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article presents an algorithm based on a short-time Fourier transform for reliable detection of epileptic seizures measured with three-dimensional (3D) accelerometry. The objective of the described work is to provide basic technical information to create useful alarm models for epileptic seizure detection using a mobile phone. The presented material is based on experimental measurements. Finally, the possibility of increasing smartphone detection capability by attaching a triaxial piezoelectric accelerometer to the patient’s wrist is suggested.
Rocznik
Strony
65--71
Opis fizyczny
Bibliogr. 14 poz., rys.
Twórcy
autor
  • AGH University of Science and Technology, Faculty of Computer Science, Electronics and Telecommunication, Department of Electronics, Mickiewicza 30 av., 30-059 Kraków, Poland
  • Faculty of Computer Science, Electronics and Telecommunication, Department of Electronics, AGH University of Science and Technology, Kraków, Poland
autor
  • Faculty of Computer Science, Electronics and Telecommunication, Department of Electronics, AGH University of Science and Technology, Kraków, Poland
Bibliografia
  • 1. Sivasankari N, Thanushkodi K. Automated epileptic seizure detection in EEG signals using FastICA and neural network. Int J Adv Soft Comput Appl 2009;1:91–104. Available at: www.i-csrs.org. Accessed on March 2013.
  • 2. Witte H, Iasemidis LD, Litt B. Special issue on epileptic seizure prediction. IEEE Trans Biomed Eng 2003;50:537–9.
  • 3. Nijsen TM, Aarts RM, Cluitmans PJ, Griep PA. Time- frequency analysis of accelerometry data for detection of myoclonic seizures. IEEE Trans Inf Technol Biomed 2010;14: 1197–202.
  • 4. Mitra SK. Digital signal processing. A computer-based approach. New York: McGraw-Hill, 1998.
  • 5. Nijsen TM, Cluitmans PJ, Arends JB, Griep PA. Detection of subtle nocturnal motor activity from 3-D accelerometry recordings in epilepsy patients. IEEE Trans Biomed Eng 2007;54:2073–81.
  • 6. Nimwegen C, Boter J, Eijnsbergen B. A method for detecting epileptic seizures. Epilepsia 1975;16:689–92.
  • 7. Nijsen TM, Aarts RM, Arends JB, Cluitmans PJ. Automated detection of tonic seizures using 3-D accelerometry. ECIFMBE 2008, IFMBE Proc 2008;22:188–91.
  • 8. Golański R, Godek J, Kołodziej J, Machowski W, Kuta S. A comparative study of integrated CMOS filters for non-uniform sampling delta modulators. Int Conf Circuits Syst Signals 2010:349–352.
  • 9. Korohoda P, Dąbrowski A. Wavelet-like decomposition stage with windowed filters defined for the discrete trigonometric transforms (DTTs). Elect Rev 2012;88: 30–5.
  • 10. Elevant J. Monitoring epilepsy with a wrist carried motion sensor. Stockholm, Sweden: PhD thesis, Royal Institute of Technology, 1999.
  • 11. Chu A. Choosing the right type of accelerometers. Measurement specialties – engineers circle, modification date: 24 May 2012. Available at: http://www.meas-spec.com/downloads/Choosing_the_Right_Type_of_Accelerometers.pdf. Accessed on March 2013.
  • 12. BMA150 digital, triaxial acceleration sensor – Bosch Sensortec datasheet. Available at: http://jp.bosch-sensortec.com/content/language1/downloads/BST-BMA150-DS000-07.pdf. Accessed: March 2013.
  • 13. Accelerometer application for Android system. Available at: https://play.google.com. Accessed: January 2013.
  • 14. Stępień J, Kołodziej J, Ostrowski J, Golański R. Simple intelligent building system with ZigBee communication units. Elektronika 2012;53:116–20.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e56fd4bc-8a9e-49ec-95f4-8dfa6dc5f656
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.