PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Environmental and Economic Dispatch Model for Smart Microgrid Based on Shuffled Frog Leap Algorithm Optimized by Random Nelder Mead

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Ekonomiczny i środowiskowy model zapotrzebowania energetycznego dla inteligentnej mikro-sieci – wykorzystanie algorytmu SFL zoptymalizowanego metodą Nelder’a-Mead’a
Języki publikacji
EN
Abstrakty
EN
As more and more distributed generation resources are integrated into the grid through smart micro-grid, achieving a more economic and better responsive distributed generation dispatch is of great importance. Economic and environmental characteristics of distributed generation are synthetically combined in a dispatch model with objective function of minimum generation cost and emission cost in this paper, and also a novel algorithm Shuffled Frog Leap Algorithm (SFLA) optimized by random Nelder Mead (RNM) model was proposed to solve the economic and environmental problem. At last, the differences in generation cost and Computation time of RNM-SFLA, Genetic Algorithm (GA), Evolutionary Programming (EP) and Shuffled Frog Leap Algorithm (SFLA) are compared with a numerical example, verifying the feasibility and advancement of environmental and economic dispatch model based on RNM-SFLA.
PL
W artykule przedstawiono model przesyłu energii elektrycznej w systemie elektroenergetycznym, mający na celu minimalizację kosztów wytwarzania i przesyłu energii. Zaproponowano także nowy algorytm SFL (ang. Shuffled Frog Leap), który został zoptymalizowany metodą Nelder’aa-Mead’a. Algorytm ma zastosowanie w rozwiązywaniu zagadnień ekonomicznych i środowiskowych. Przeprowadzona została analiza porównawcza opisanego modelu.
Rocznik
Strony
147--151
Opis fizyczny
Bibliogr. 29 poz., schem., tab., wykr.
Twórcy
autor
  • North China Electric Power University, Beijing 100101 P. R. China
autor
  • North China Electric Power University, Beijing 100101 P. R. China
autor
  • North China Electric Power University, Beijing 100101 P. R. China
autor
  • North China Electric Power University, Beijing 100101 P. R. China
autor
  • North China Electric Power University, Beijing 100101 P. R. China
autor
  • North China Electric Power University, Beijing 100101 P. R. China
Bibliografia
  • [1] WANG Jiang-hai, TAI Neng-ling, SONG Kai, “Penetration Level Permission of for DG in Distributed Network Considering Relay Protection,” Proceedings of the CSEE, 30 (2010), No. 22, 37-43.
  • [2] YU Kun, CAO Yijia, CHEN Xingying, “Dynamic Probability Power Flow of District Grid Containing Distributed Generation,” Proceedings of the CSEE, 31 (2011), No. 1, 20-25.
  • [3] WANG Xudong, LIN Jikeng, “Island Partition of the Distribution System With Distributed Generation Based on Branch and Bound Algorithm,” Proceedings of the CSEE, 31(2011), No. 7, 16-20.
  • [4] Zeng Ming, Xue Song, Zhu Xiaoli, “China's 12th Five-Year Plan Pushes Power Industry in New Directions,” Power, 156 (2012), No. 2, 50-55.
  • [5] YUAN Tiejiang, CHAO Qin, TOERXUN Yibulayin, “Optimized Economic and Environment-friendly Dispatching Modeling for Large-scale Wind Power Integration,” Proceedings of the CSEE, 30(2010), No. 31, 7-13.
  • [6] Wasiak Irena, “The concept of smart electrical power microgrids,” Przeglad Elektrotechniczny, 87(2011), No. 6, 35-41.
  • [7] ZHOU Renjun, YAO Longhua, TONG Xiaojiao, “Security Economic Dispatch in Wind Power Integrated Systems Using a Conditional Risk Method,” Proceedings of the CSEE, 32(2012), No. 1, 56-64.
  • [8] Han Yang, Xu Lin, “A survey of the Smart Grid Technologies: background, motivation and practical applications,” Przeglad Elektrotechniczny, 87(2011), No. 6, 47-57.
  • [9] Ali Zangeneh, Shahram Jadid, Ashkan Rahimi-Kian, “A fuzzy environmental-technical-economic model for distributed generation planning,” Energy, 32(2011), No. 5, 3437-3445.
  • [10] LIU Xueping, LIU Tianqi, WANG Jian, “Niche-Based Multi-Objective Distributed Generators Planning in Distribution Network,” Power System Technology, 34(2010), No. 10, 126-130.
  • [11] Porkar S., Poure P., Abbaspour-Tehrani-fard A, “A novel optimal distribution system planning framework implementing distributed generation in a deregulated electricity market,” Electric Power Systems Research, 80(2010), No. 7, 828-837.
  • [12] Pallares L. V., Moreno Munoz Antonio, Gonzalez de la Rosa Juan Jose, “Synchrophasor for Smart Grid with IEEE 1588-2008 Synchronism,” Przeglad Elektrotechniczny, 88(2012), No. 1A, 31-36.
  • [13] ZHANG Jietan, CHENG Haozhong, YAO Liangzhong, “Study on Siting and Sizing of Distributed Wind Generation,” Proceedings of the CSEE, 29(2009), No. 16, 1-7 .
  • [14] LI Peng, LIAN Chao, LI Botao, “A Graph-based Optimal Solution for Siting and Sizing of Grid-connected Distributed Generation,” Proceedings of the CSEE, 29(2009), No. 4, 91-96.
  • [15] PEI Wei, SHENG Kun, KONG Li, “Impact and Improvement of Distributed Generation on Distribution Network Voltage Quality,”Proceedings of the CSEE, 28(2008), No. 13, 152-157.
  • [16] QIAN Ke-jun, YUAN Yue, SHI Xiao-dan, “Environmental Benefits Analysis of Distributed Generation,” Proceedings of the CSEE,28(2008), No. 29, 11-15 .
  • [17] Raghami Alireza, Ameli Mohammad Taghi, “Representing an intelligent load shedding algorithm with utilization of frequency deviation integration,” Przeglad Elektrotechniczny, 88(2012), No. 1A, 233-237.
  • [18] Mikulik Jerzy, “The impact of disturbed input data sets on the accuracy of mathematical modelling of intelligent building security,” Przeglad Elektrotechniczny, 87(2011), No. 5, 193-198.
  • [19] DONG Jun, CHEN Xiao-liang, ZHANG Jing, “Study of power grid dispatching models with consideration of distributed generators,”East China Electric Power, 37(2009), No. 5, 723-726.
  • [20] Han X.S., Gooi H.B, “Effective economic dispatch model and algorithm,” International Journal of Electrical Power & Energy Systems, 29(2007), No. 2, 113-120.
  • [21] YU Jie, LI Yang, XIA An-ban, “Distributed Optimization of Generation Dispatch Schedule Considering Environmental Protection and Economic Profits,” Proceedings of the CSEE, 29(2009), No. 16, 63-68.
  • [22] Morales Paredes Helmo K., Costabeber Alessandro, Tenti Paolo, “Application of Conservative Power Theory to cooperative control of distributed compensators in smart grids,” Przeglad Elektrotechniczny, 87(2011), No. 1, 1-7.
  • [23] Halicka Katarzyna, “Assessment of the effectiveness of forecasting on the power distribution on the Power Exchange,”Przeglad Elektrotechniczny, 86(2010), No. 4, 320-322.
  • [24] CHEN Gonggui, LI Zhihuan, CHEN Jinfu, “SFL Algorithm Based Dynamic Optimal Power Flow in Wind Power Integrated System,”Automation of Electric Power Systems, 33(2009), No. 4, 25-30.
  • [25] Chen Fang, Ling Wang, “An effective shuffled frog-leaping algorithm for resource-constrained project scheduling problem,”Computers & Operations Research, 39(2011), No. 5, 890-901.
  • [26] Eusuffm M, Lansey K, “Optimization of Water Distribution Network Design Using Shuffled Frog Leaping Algorithm,” Journal of Water Resources Planning and Management, 129(2003), No. 3, 210-225.
  • [27] Puhan J, Tuma T, “Grid restrained Nelder-Mead algorithm,”Computational Optimization and Applications, 34(2006), No. 3, 359-375.
  • [28] Lagarias JC., Wright MH., Wright PE, “Convergence properties of the Nelder-Mead simplex method in low dimensions,” SIAM Journal on Optimization, 9(1998), No. 1,112-147.
  • [29] Peter C.W., Terry E.S, “Parameter sensitivity study of the Nelder–Mead Simplex Method,” Advances in Engineering Software, 19(2011), No. 7,529-533.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e56d6abd-a5c2-434d-874a-330bb9d8988c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.