PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

A winter flash flood in Skenderaj, Kosovo: heavy rainfall analysis and early warning perspectives

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Flash floods pose a significant risk to infrastructure in Kosovo, particularly in urban and riverine areas. This research focuses on an intense river flood event that took place on January 19, 2023, in the Skenderaj catchment. The study’s main goal was to establish a flash flood early warning system by combining sophisticated atmospheric modeling, hydrological evaluation, and rainfall hazard analysis. The ARW model with 2-km resolution effectively captured rainfall intensity and local flood occurrences, particularly around Skenderaj and Istog, whereas the 4-km NMM model better represented wider spatial precipitation patterns. Hydrological results demonstrated that precipitation strongly dictated river discharge and runoff dynamics, with the highest flows recorded in northern Albania. To validate and enhance forecast accuracy for flash flood warnings, datasets from the Global Flood Awareness System (GloFAS), the European Flood Awareness System (EFAS), and ERA5 reanalysis were incorporated. These resources prov ided essential information on antecedent conditions, such as soil moisture and snowmelt, which substantially influenced runoff and flood magnitude. The ECMWF Copernicus framework also contributed by supplying 24-hour river discharge forecasts for Kosovo’s basins, aiding in timely and spatially detailed flood alerts. The Novel Thunderstorm Alert System (NOTHAS) was updated to integrate crucial hydrological variables - including surface and convective runoff, snow water equivalent, soil moisture, and slope - thereby enhancing the precision of flood warnings. This improved system enabled effective classification of flood risk zones, thus identifying areas vulnerable to flash floods and landslides. The study highlights the crucial role of high-resolution weather modeling, hydrological insights, and integrated early warning systems in enhancing flash flood prediction and mitigation efforts.
Twórcy
  • Ss Cyril and Methodius University Skopje, North Macedonia
  • Ss Cyril and Methodius University Skopje, North Macedonia
  • Ss Cyril and Methodius University Skopje, North Macedonia
  • University of Prishtina
  • University of Prishtina
Bibliografia
  • Agaj T., Jaskuła J., Bytyqi V., Agaj S., 2024, Understanding flood in Kosovo: Spatial patterns, urban influences and implicat ions for resilience in Lumbardhi i Pejës and Klina catchments, International Journal of Disaster Risk Reduction, 113, DOI: 10.1016/j.ijdrr.2024.104830.
  • Alfieri L., Burek P., Dutra E., Krzeminski B., Muraro D., Thielen J., Pappenberger F., 2013, GloFAS - global ensemble streamflow forecastin and flood early warning, Hydrology and Earth System Sciences, 17 (3), 1161-1175, DOI: 10.5194/hess-17-1161-2013.
  • Archer D.R., Leesch F., Harwood K., 2006, Learning from the extreme River Tyne flood in January 2005, Water Environment Journal, 21 (2), 133-141, DOI: 10.1111/j.1747-6593.2006.00058.x.
  • Bernardet L.R., Grasso L.D., Nachamkin J.E., Finley C.A., Cotton W.R., 2000, Simulating convective events using a high-resolution mesoscale model, Journal of Geophysical Research: Atmospheres, 105 (D11), 14963-14982, DOI: 10.1029/2000JD900100.
  • Borga M., Boscolo P., Zanon F., Sangati M., 2007, Hydrometeorological analysis of the 29 August 2003 flash flood in the Easte rn Italian Alps, Journal of Hydrometeorology, 8 (5), 1049-1067, DOI: 10.1175/JHM593.1.
  • Chawla I., Osuri K.K., Mujumdar P.P., Niyogi D., 2018, Hydrology and Earth System Sciences, 22 (2), 1095-1117, DOI: 10.5194/hess-22-1095-2018.
  • Chinta S., Sai J.Y., Balaji C., 2021, Assessment of WRF model parameter sensitivity for high-intensity precipitation events during the Indian summer monsoon, Earth and Space Science, 8 (6), DOI: 10.1029/2020EA001471.
  • Cluckie I.D., Han D., 2000, Fluvial flood forecasting, Water and Environmental Management, 14 (4), 270-276, DOI: 10.1111/j.1747-6593.2000.tb00260.x.
  • Didovets I., Krysanova V., Bürger G., Snizhko S., Balabukh V., Bronstert A., 2019, Climate change impact on regional floods i n the Carpathian region, Journal of Hydrology: Regional Studies, 22, DOI: 10.1016/j.ejrh.2019.01.002.
  • Dobler C., Bürger G., Stötter J., 2012, Assessment of climate change impacts on flood hazard potential in the Alpine Lech wat ershed, Journal of Hydrology, 460-461, 29-39, DOI: 10.1016/j.jhydrol.2012.06.027.
  • Dudhia J., 1989, Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model, Journal of the Atmospheric Sciences, 46 (20), 3077-3107, DOI: 10.1175/1520-0469(1989)0462.0.CO;2.
  • Elmore K.L., Stensrud D.J., Crawford K.C., 2002, Ensemble cloud model applications to forecasting thunderstorms, Journal of Applied Meteorology, 41, 363-383, DOI: 10.1175/1520-0450(2002)0412.0.CO;2.
  • Ferrier B.S., 1994, A double-moment multiple-phase four-class bulk ice scheme. Part I: Description, Journal of Atmospheric Sciences, 51 (2), 249-280, DOI: 10.1175/1520-0469(1994)0512.0.CO;2.
  • Giannaros C., Dafis S., Stefanidis S., Giannaros T.M., Koletsis I., Oikonomou C., 2022, Hydrometeorological analysis of a fla sh flood event in an ungauged Mediterranean watershed under an operational forecasting and monitoring context, Meteorological Applications, 29 (4), DOI: 10.1002/met.2079.
  • Han J.-Y., Hong S.-Y., 2018, Precipitation forecast experiments using the Weather Research and Forecasting (WRF) model at grayzone resolutions, Weather and Forecasting, 33, 1605-1616, DOI: 10.1175/WAF-D-18-0026.1.
  • Han J.-Y., Hong S.-Y., Sunny Lim K.-S., Han J., 2016, Sensitivity of a cumulus parameterization scheme to precipitation production representation and its impact on a heavy rain event over Korea, Monthly Weather Review, 144 (6), 2125-2135, DOI: 10.1175/MWR-D-15-0255.1.
  • Hapuarachchi H.A.P., Wang Q.J., Pagano T., 2011, A review of advances in flash flood forecasting, Hydrological Processes, 25 (18), 2771-2784, DOI: 10.1002/hyp.8040.
  • Hersbach H., Bell B., Berrisford P., Hirahara S., Horányi A., Muñoz Sabater J., Nicolas, Peubey C., Radu R., Schepers D., Simmons A., Soci C., Abdalla S., Abellan X., Balsamo G., Bechtold P., Biavati G., Bidlot J., Bonavita M., De Chiara G., Dahlgren P., Dee D., Diamantakis M., Dragani R., Flemming J., Forbes R., Fuentes M., Geer A., Haimberger L., Healy S., Hogan R.J., Hólm E., Janisková M., Keeley S., Laloyaux P., Lopez P., Lupu C., Radnoti G., de Rosnay P., Rozum I., Vamborg F., Villaume S., Thépaut J.-N., 2020, The ERA5 global reanalysis, Quarterly Journal of the Royal Meteorological Society, 146 (730), 1999-2049, DOI: 10.1002/qj.3803.
  • Hong S.-Y., 2010, A new stable boundary-layer mixing scheme and its impact on the simulated East Asian summer monsoon, Quarterly Journal of the Royal Meteorological Society, 136 (651), 1481-1496, DOI: 10.1002/qj.665.
  • Hong S.Y., Lim J.-O.J., 2006, The WRF single-moment 6-class microphysics 515 scheme (WSM6), Asia-Pacific Journal of Atmospheric Sciences, 42 (2), 129-151.
  • Janjic Z.I., 1996, The surface layer in the NCEP Eta Model, preprints, 11th Conference on Numerical Weather Prediction, Norfolk, VA, American Meteorological Society, 354-355.
  • Janjic Z.I., 2001, Nonsingular Implementation of the Mellor-Yamada Level 2.5 Scheme in the NCEP Meso model, National Centres for Environmental Prediction (NCEP), Office Note #437, available online at https://repository.library.noaa.gov/view/noaa/11409/noaa_11409_DS1.pdf (data access 06.08.2025).
  • Janjic Z.I., 2003, A nonhydrostatic model based on a new approach, Meteorology and Atmospheric Physics, 82, 271 -285, DOI: 10.1007/s00703-001-0587-6.
  • Jankov I., Gallus W.A. Jr., Segal M., Koch S.E., 2007, Influence of initial conditions on the WRF-ARW model QPF response to physical parameterization changes, Weather and Forecasting, 22 (3), 501-519, DOI: 10.1175/WAF998.1.
  • Kain J.S., Weiss S.J., Levit J.J., Baldwin M.E., Bright D.R., 2006, Examination of convection-allowing configurations of the WRFNMM model for the prediction of severe convective weather: The SPC/NSSL Spring Program 2004, Weather and Forecasting, 21 (2), 167-181, DOI: 10.1175/WAF906.1.
  • Kane S., Shogren J.F., 2000, Linking adaptation and mitigation in climate change policy, Climatic Change, 45, 75-102, DOI: 10.1023/A:1005688900676.
  • Lee J.W., Hong S.Y., 2006, A numerical simulation study of orographic effects for a heavy rainfall event over Korea using the WRF model, Atmosphere, 16 (4), 319-332.
  • Liu C., Guo L., Ye L., Zhang S., Zhao Y., Song T., 2018, A review of advances in China’s flash flood early-warning system, Natural Hazards, 92, 619-634, DOI: 10.1007/s11069-018-3173-7.
  • Liu Y., Chen Y., Chen O., Wang J., Zhuo L., Rico-Ramirez M.A., Han D., 2021, To develop a progressive multimetric configuration optimisation method for WRF simulations of extreme rainfall events over Egypt, Journal of Hydrology, 598, DOI: 10.1016/j.jhydrol.2021.126237.
  • Mlawer E.J., Taubman S.J., Brown P.D., Iacono M.J., Clough S.A., 1997, Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave, Journal of Geophysical Research, 102 (D14), 16663-16682, DOI: 10.1029/97JD00237.
  • Misenis C., Zhang Y., 2010, An examination of the sensitivity of WRF/Chem predictions to physical parameterizations, horizont al grid spacing, and nesting options, Atmospheric Research, 97 (3), 315-334, DOI: 10.1016/j.atmosres.2010.04.005.
  • Moragoda N., Cohen S., 2020, Climate-induced trends in global riverine water discharge and suspended sediment dynamics in the 21st century, Global and Planetary Change, 191, DOI: 10.1016/j.gloplacha.2020.103199.
  • Osmanaj L., Spiridonov I., Jakimovski B., Spiridonov V., 2025, Assessment of the WRF model in reproducing a flash-flood heavy rainfall event over Kosovo, Acta Geophysica, 73, 917-932, DOI: 10.1007/s11600-024-01365-9.
  • Schwartz C., Romine G.S., Sobash R.A., Fossell K.R., Weisman M.L., 2015, NCAR’s experimental real-time convection-allowing ensemble prediction system, Weather and Forecasting, 30 (6), 1645-1654, DOI: 10.1175/WAF-D-15-0103.1.
  • Shin H.H., Hong S.-Y., 2015, Representation of the subgrid-scale turbulent transport in convective boundary layers at gray-zone resolutions, Monthly Weather Review, 143 (1), 250-271, DOI: 10.1175/MWR-D-14-00116.1.
  • Skamarock W.C., Klemp J.B., Dudhia J., Gill D.O., Barker D.M., Duda M.G., Huang X.-Y., Wand W., Powers J.G., 2008, A Description of the Advanced Research WRF Version 3, NCAR Technical Note, NCAR/TN-475+STR.
  • Spiridonov V., Baez J., Telenta B., Jakomovski B., 2020, Prediction of extreme convective rainfall intensities using a free-running 3-D sub-km-scale cloud model initialized from WRF km-scale NWP forecasts, Journal of Atmospheric and Solar-Terrestrial Physics, 209, DOI: 10.1016/j.jastp.2020.105401.
  • Spiridonov V., Curic M., Grcic M. Jakimovski B., 2022, Ensemble cloud model application in simulating the catastrophic heavy rainfall event, Journal of Atmospheric Science Research, 5 (4), 35-49, DOI: 10.30564/jasr.v5i4.5081.
  • Spiridonov V., Curic M., Sladic N., Jakimovski B., 2021, Novel Thunderstorm Alert System (NOTHAS), Asia-Pacific Journal of Atmospheric Sciences, 57, 479-498, DOI: 10.1007/s13143-020-00210-5.
  • Spiridonov V., Grcić M., Sladić N., Ćurić M., Jakimovski B., 2023, The capability of NOTHAS in the prediction of extreme weather events across different climatic areas, Acta Geophysica, 71, 3007-3024, DOI: 10.1007/s11600-023-01122-4.
  • Thielen J., Bartholmes J., Ramos M.-H., de Roo A., 2009, The European Flood Alert System - Part 1: Concept and development, Hydrology and Earth System Sciences, 13 (2) 125-140, DOI: 10.5194/hess-13-125-2009.
  • Thompson G., Eidhammer T., 2014, A Study of aerosol impacts on clouds and precipitation development in a large winter cyclone, Journal of the Atmospheric Sciences, 71 (10), 3636-3658, DOI: 10.1175/JAS-D-13-0305.1.
  • Thompson G., Field P.R., Rasmussen R.M., Hall W.D., 2008, Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization, Monthly Weather Review, 136 (12), 5095-5115, DOI: 10.1175/2008MWR2387.1.
  • Varlas G., Papaioannou G., Papadopoulos A., Markogianni V., Vardakas L., Dimitriou E., 2023, Flash flood forecasting using integrated meteorological-hydrological-hydraulic modeling: Application in a Mediterranean river, Environmental Sciences Proceedings, 26 (1), DOI: 10.3390/environsciproc2023026035.
  • Xue M., Martin W.J., 2006, A high-resolution modeling study of the 24 May 2002 Dryline Case during IHOP. Part I: Numerical simulation and general evolution of the dryline and convection, Monthly Weather Review, 134 (1), 149-171, DOI: 10.1175/MWR3071.1.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e56cd2d8-fa04-4009-af1d-a37ac6b22192
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.