PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Measurement of absorbed dose in water in brachytherapy

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Introduction: The most commonly used method for measuring the activity of sources in brachytherapy involves well chambers, which are utilized to measure air kerma. Brachytherapy centers are required to employ the TG-43 algorithm, which calculates the dose distribution in water. Transitioning from air to water introduces uncertainties. The objective of this study is to develop a new method for measuring the absorbed dose in water for 192Ir radiation. Material and Methods: A prototype ionization chamber was used in this study. To determine the absorbed dose in water measured by this chamber, the definition of absorbed dose in water was applied directly. Perturbation factors were calculated using Monte Carlo simulations, while correction factors were derived from measurements taken with the ionization chamber. A water phantom was created, along with a positioning system for the ionization chamber and a holder for the source. Corrections were calculated for polarization, recombination, saturation, and the effects of pressure and temperature on the chamber signal were taken into account. Measurements were performed at the position of the maximum chamber signal, determined before each measurement, and repeated for various air kerma values and different sources. Results: The measurement results in water were compared to those obtained from the TG-43 algorithm. Results indicate a combined measurement uncertainty of 1.26%, representing a significant improvement over the well chamber measurements. Conclusion: Preliminary results indicate the potential for improving dosimetric accuracy in brachytherapy. By using values for absorbed dose in water, uncertainties associated with converting air kerma to dose distribution in water can be eliminated.
Słowa kluczowe
Rocznik
Strony
269--273
Opis fizyczny
Bibliogr. 15 poz., rys., tab.
Twórcy
  • Holy Cross Cancer Center, Kielce, Poland
  • Jan Kochanowski University of Kielce, Poland
  • Central Office of Measures, Warsaw, Poland
  • Holy Cross Cancer Center, Kielce, Poland
  • Holy Cross Cancer Center, Kielce, Poland
  • Jan Kochanowski University of Kielce, Poland
Bibliografia
  • 1. IAEA, 2002. Calibration of Photon and Beta Ray Sources Used in Brachytherapy. Number 1274 in TECDOC Series. International Atomic Energy Agency; 2002.
  • 2. Nath R, Anderson LL, Luxton G, Weaver KA, Williamson JF, Meigooni AS. Dosimetry of interstitial brachytherapy sources: Recommendations of the AAPM Radiation Therapy Committee Task Group No. 43. Med Phys. 1995;22(2):209-234. https://doi.org/10.1118/1.597458
  • 3. Williamson JF. Comparison of measured and calculated dose rates in water near I‐125 and Ir‐192 seeds. Medical Physics. 1991;18(4):776-786. https://doi.org/10.1118/1.596631
  • 4. DeWerd LA, Ibbott GS, Meigooni AS, et al. A dosimetric uncertainty analysis for photon‐emitting brachytherapy sources: Report of AAPM Task Group No. 138 and GEC‐ESTRO. Medical Physics. 2011;38(2):782-801. https://doi.org/10.1118/1.3533720
  • 5. Daskalov GM, Löffler E, Williamson JF. Monte Carlo‐aided dosimetry of a new high dose‐rate brachytherapy source. Medical Physics. 1998;25(11):2200-2208. https://doi.org/10.1118/1.598418
  • 6. Boutillon M, Perroche AM. Ionometric determination of absorbed dose to water for cobalt-60 gamma rays. Phys Med Biol. 1993;38(3):439-454. https://doi.org/10.1088/0031-9155/38/3/010
  • 7. ICRU Report 90, Key Data For Ionizing-Radiation Dosimetry: Measurement Standards And Applications – ICRU. Accessed April 17, 2024. https://www.icru.org/report/icru-report-90-key-data-for-ionizing-radiation-dosimetry-measurement-standards-and-applications.
  • 8. Szymko M. Budowa wzorca dawki pochłoniętej w wodzie dla źródeł stosowanych w brachyterapii [Construction of the water absorber dose standard for sources used in brachytherapy]. [PhD thesis]. Warsaw University of Technology; 2024. https://repo.pw.edu.pl/info/phd/WUT8634915e3b994ce4a077bf2aedf3373e/
  • 9. IAEA. Absorbed Dose Determination in External Beam Radiotherapy. Technical Reports Series. Published online 2024. https://doi.org/10.61092/iaea.ve7q-y94k
  • 10. Szymko MM, Knyziak AB, Derlaciński M. Graphite ionization chamber as an ionometric standard of absorbed dose to water for Co-60 gamma radiation. Measurement. 2022;194:110928. https://doi.org/10.1016/j.measurement.2022.110928
  • 11. Andreo P, Burns DT, Nahum AE, Seuntjens J, Attix,FH. Fundamentals of ionizing radiation dosimetry. John Wiley & Sons; 2017.
  • 12. Szymko MM, Michalik L, Knyziak AB, Wójtowicz AW. Development and characterization of air kerma cavity standard. Measurement. 2019;136:647-657. https://doi.org/10.1016/j.measurement.2019.01.010
  • 13. Bravos manual. https://www.varian.com/resources-support/support/product-documentation
  • 14. Rozporządzenie Ministra Zdrowia z dnia 12 grudnia 2022 r. w sprawie testów eksploatacyjnych urządzeń radiologicznych i urządzeń pomocniczych [Regulation of the Minister of Health of 12 December 2022 on operational tests of radiological devices and auxiliary devices]. Dz.U. 2022 poz. 2759
  • 15. Sander T. Air kerma and absorbed dose standards for reference dosimetry in brachytherapy. BJR. 2014;87(1041):20140176. https://doi.org/10.1259/bjr.20140176
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e567ba85-6607-42e5-b58f-b81e23be4154
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.