
ARCHITECTURAE ET ARTIBUS - vol.15 - 3(57)/2023 ARCHITECTURAE ET ARTIBUS - vol.15 - 3(57)/2023 11

pages: 11 - 38

© 2023 by the author(s). Articles are publshed as open
access articles under the Creative Commons Attribution-Non-
Commercial-NoDerivs License (http://creativecommons.
org/licenses/by-nc-nd/4.0/).

GENERATIVE AND EVOLUTIONARY MODELS IN THE DESIGN
OF ARCHITECTURAL FORM - INSIGHTS FROM HISTORY

Krystyna Januszkiewicz*, Natalia Paszkowska-Kaczmarek**

West Pomeranian University of Technology, Faculty of Architecture, ul. Żołnierska 50, 71-210 Szczecin, Poland
* E-mail: krystyna_januszkiewicz@wp.pl, ORCID: 0000-0001-6880-0862
** E-mail: npaszkow@gmail.com, ORCID: 0000-0002-3161-5417

DOI: 10.24427/aea-2023-vol15-07

Abstract
This paper explores the possibilities of the use of computer-aided design models focused on imitating the works of Nature,
its form-forming processes and behaviors. Tracking the development of the cybernetic models aimed at architects, the
achievements of John H. Frazer and his team of scientists are presented. These are the first working morphogenetic mo-
dels addressed to architects that use generative and evolutionary tools in search of new architectural forms. Models and
design strategies developed between 1968 and 1995, including the Reptile System, the Interactivator and the Janssen
Model, are presented. The IT solutions used in them provided the basis for the creation of modern computational tools
coupled with digital technology.

Keywords: architecture; design; computer; generative; evolutionary algorithms; form-forming process

INTRODUCTION

The creative potential of information media has
opened up a new dimension in the design of architectu-
re, especially oriented to imitate the works of Nature, its
formative processes and behavior through generative
and evolutionary design tools. Today, the instrumenta-
lization of these processes is changing the approach to
the design of buildings by bringing designers closer to
creating architecture that is compatible with the natural
environment, not only visually, but also in terms of ac-
ting like a living organism. The growing current interest
in imitating natural processes through computer tools
rocks the analysis of primitive scientific experiments,
making it possible to synthesize information to con-
struct a coherent description of events that took place
in the 1970s and set the directions of modern research.
Thus, the cognitive scope of a specific slice of reali-

ty is expanded, which is the primary goal of scientific
research, thus filling a gap in the theory and history of
architecture in the second half of the 20th century.

Generative design tools are what are often cal-
led morphogenetic tools. They originate from the scien-
ces and are used to produce 2D and 3D patterns and
forms with complex geometry. They are mathematical
models that describe states or phenomena that occur
in the natural world, although they can only be a ma-
thematical operation. Their name (Latin: generare - to
give birth) refers to such methods of applying mathe-
matical symbols and relations, which are used to pro-
duce states of increasing complexity corresponding to
established rules*.

Synthetic evolutionary algorithms, on the other
hand, mimic the mechanisms of evolution, the same

*A mathematical model is a finite set of mathematical symbols and relationships and strict rules for operating with them. They refer to spe-
cific elements of the modeled fragment of reality. Modeling is used to learn about a given process by replacing it with a simplified layout
that reflects selected characteristics of the process. The mathematical description of the model is presented in the form of a system of
algebraic or differential equations. See: Jakub Gutenbaum, Modelowanie matematyczne systemów, wyd. III, Instytut Badań Naukowych
PAN, Warszawa, 2003.

ARCHITECTURAE ET ARTIBUS - vol.15 - 3(57)/202312

K. JANUSZKIEWICZ, N. PASZKOWSKA-KACZMAREK

ones found in biology. It is a set of methods and techni-
ques that includes not only genetic algorithms, but also
genetic programming and evolutionary strategies. Evo-
lution, is now an indisputable scientific fact, documen-
ted by evidence derived from many fields of science.
The essence of evolution is the combination of random
(undirected) changes in genotype with strictly directed
environmental pressures.

It proceeds according to the following general
principles [10 AE 2009]:

•	 The genotype of an individual undergoes modifi-
cations during reproduction. These changes can
result either from small, random mutations, or
from mixing (crossing) traits of parental individu-
als;

•	 Changes in the genotype cause changes in the
phenotype of offspring individuals, which affects
the degree of their adaptation to the environment
(subject to evaluation by means of a goal func-
tion);

•	 Changes in the genotype are random in nature.
Changes favorable to an individual occur as often
as unfavorable or indifferent ones;

•	 Individuals are evaluated by comparing their ad-
aptation to a given environment. Those that are
better adapted are more likely to reproduce;

•	 Less-adapted individuals succumb during com-
petition for limited environmental resources and
perish;

•	 Changes (mutation, crossover) are subject to the
genotype of the individual, while selection is sub-
ject to phenotypes.
Biological evolution drives morphological diver-

sity through genetic variation and results in high levels
of adaptation, efficiency and resource efficiency. The-
refore, a synthetic evolutionary algorithm modeled on
biological evolution is applied to optimization tasks and
modeling

Generative design tools can be divided into two
groups [N. Paszkowska-Kaczmarek 2022, p.117]:

•	 Tools that mimic the formative processes found
in Nature: Cellular Automata, L-systems, evolu-
tionary and genetic algorithms;

•	 Mathematical tools-objects (specific type of sets)
such as: Fractals, Voronoi Diagrams,

•	 Grammars of of shape, can describe the geome-
tric results of natural formative processes.
In the design of architectural forms, the tools of

the two groups are often complementary. They inclu-
de techniques, both digital and computational models
that are used to derive and transform form, raising it to
a higher level of complexity, both formally and structu-
rally, in an effort to obtain high environmental perfor-
mance. The use of generative tools and computational

models that mimic natural formation processes in de-
sign practice still requires the integration of methods
and techniques and tools that work together associati-
vely in a CAD/CAM system.

Although the basic computational models of na-
tural formation processes were developed before the
computer revolution, their implementation into com-
puter systems was gradual, with the development of
computational capabilities and computer memory.

Tracing the development of generative tools
aimed at the architect, it is difficult to overlook the
achievements of John Fresher and the team of scienti-
sts he led. Thanks to them, the second half of the 20th
century saw the development of the first action models
that use generative and evolutionary tools that can be
used in the design of architectural form.

1. SEEDING AN IDEA

Between 1968 and 1995, the first design mo-
dels were developed using generative tools and evolu-
tionary tools. Each model defines a set of tasks to be
performed by the design team, and in each case one
of the tasks requires generative or evolutionary design
tools. These models matched the capabilities of the
hardware and the state of the art in computer science
at the time. They can be described as follows:

- Generative design models are used to generate
a large number of design alternatives that vary wi-
dely. The computer systems developed for them
define a complex growth process that transforms
the coded seed into a design. By making slight
modifications to the transformation process or
just the shape of the seed, alternative designs
can be generated

- Evolutional design models were used to develop
designs adapted to their environments. These
models relate to the neo-Darwinian model of evo-
lution by natural selection. The computer system
then enables a cyclic process in which popula-
tions of design shapes are constantly manipula-
ted to ensure that the population as a whole gra-
dually evolves and adapts.

- Generative - evolu tional design models take the
evolutionary process of nature as the process of
creating architectural form. Such computer-based
evolutionary systems consist of a cyclic process
that manipulates the entire population of design
shapes. Here, the generative system uses code
scripts of instructions to create computer models
of alternative designs. These designs are used to
simulate the creation of prototype forms, which
are then evaluated based on their performance
in the simulated environment. By mutating and

ARCHITECTURAE ET ARTIBUS - vol.15 - 3(57)/2023 ARCHITECTURAE ET ARTIBUS - vol.15 - 3(57)/2023 13

GENERATIVE AND EVOLUTIONARY MODELS IN THE DESIGN OF ARCHITECTURAL FORM - INSIGHTS FROM HISTORY

manipulating the code scripts, new forms are ge-
nerated. There can be multiple evolutionary sta-
ges processed in a short period of time, and the
emerging forms are often unexpected.
The aforementioned design models and their

corresponding generating systems were based on
a common strategy called “seeding an idea” (for a proj-
ect), or initial configuration, which John Frazer explained
as follows [J.H. Frazer 1995]:

“If architectural concepts developed by desi-
gners could be captured and codified in a generic form,
the generating system could invoke them to generate
designs that embody those concepts. This approach
to capturing and codifying architectural concepts is re-
ferred to as idea seeding.” [J.H. Frazer 1974, p. 231].

When adopting an “idea seeding” strategy in
a design model, three tasks should be defined:

•	 codification of generative concepts where a set
of generative rules is defined that can transform
the seed of a concept into a design;

•	 codification of architectural concepts where the
seed of an idea is defined, which already contains
certain architectural concepts;

•	 project generation where projects are generated
in response to the project environment (which in-
cludes both context and criteria), which requires
a system and tools that generate.
It should not have been assumed that the tasks

identified by such a design model were mutually inde-
pendent. Nevertheless, in most cases they developed
in parallel.

The above diagrams summarize the “idea se-
eding” strategies for the design model and for the ge-
nerating system. For the design model, the diagram
(Fig.1a) identifies specific tasks to be performed by the
project team, with each task requiring specific inputs
and resulting in specific outputs. Input and Output out-
puts are shown in oval frames, while tasks are shown

Fig.1a-b. “Seeding the idea” model, a) design model, b) computer generation system, diagrams; source: J.H. Frazer, P. Janssen.

without frames. In contrast, the diagram (Fig.1b) shows
a schematic of the generating system required by a de-
sign model based on an idea seeding strategy. In this
case, information defined independently of the system
is shown in frames, while information contained in the
system is displayed without such frames [J.H. Frazer,
J.M. Connor 1979].

A generating system based on the initial con-
figuration or “idea seeding” is not itself a cyclic sys-
tem. The system generates a single form proposal from
a single seed in response to the design environment.
However, the premise was that the designer explores
a range of design possibilities, making small generative
modifications to either the germ of the concept or the
generative rules. The result is a cyclical process led by
the designer. The first attempt to implement this ap-
proach was the Reptile System developed, in its first
version in 1968 [J.H. Frazer 1974].

1.1. REPTILE 1968-1974 Generative System
The Reptile generating program and system,

developed between 1968 and 1974 by British architect
and scientist John H. Frazer, made a breakthrough in
computer design methodology and building thinking.
The Reptile generating system was able to create
a wide range of multi-space roofs from just two basic
structural units. These units could be positioned in 18
different ways relative to each other, providing more
than three hundred combinatorial possibilities.

Manual drawing of objects, especially those
composed of repeated components and their perspec-
tive views, necessitated the development of a compu-
ter program to facilitate the process. However, in 1967
the capabilities of computer hardware were limited, not
only in terms of speed and memory, but also in terms
of output graphic representation. In 1971, the Reptile
System was enhanced with additional features, and
the generating system was already capable of semi-

ARCHITECTURAE ET ARTIBUS - vol.15 - 3(57)/202314

K. JANUSZKIEWICZ, N. PASZKOWSKA-KACZMAREK

automatically producing the forms of complete archi-
tectural objects (Fig. 2).

The basic data structure was created and han-
dled by a series of machine code subroutines and func-
tions (written as binary numbers directly for execution
by the processor). These allowed unit descriptions to
be retrieved, deleted or updated, and additional units to
be entered. The seed for seeding here was a minimal,
closed configuration of units that included all possible
orientations, but not necessarily in all possible combi-
nations. Site development was initiated by spreading
the data describing the structure of the units that make
up the selected seed in chained units, from the top of
the seed downward in a clockwise direction. The lo-
cation and orientation of the units were determined by
four integers. The first two numbers specified the loca-
tion on a two-dimensional grid with axes at an angle of
600; the third integer specified the depth or level of the
unit in the structure, and the fourth the orientation of
the unit. Such a description of a unit, with an indication
of the next unit in the chain, was defined as a genetic
code script [J.H. Frazer 1974].

The configuration of units in the seed had a si-
gnificant impact on the final, form of the object. In con-
trast, differences in information about the type and
orientation of the initial unit and the units adjacent to it
in the data chain affected the generating system’s cho-

ice of procedures for filling the data chain with units.
This is analogous to the difference between the transi-
tion rules in Cellular Automata and the initial (seed) con-
figuration. The first limited version of the program used
only two seeds, the node (containing 42 units), and the
second version the star (containing 72 units) [J.H. Fra-
zer 1974]. A generalized, component-based version of
Reptile was later refined so that the program required
two types of information:

•	 conceptual model of building information in its
minimum coded configuration;

•	 description of the actual components and details
of the output stage.
The description of an object's initial (seed) con-

figuration was not necessarily going to be a building
component, but more often a set of components in
a key configuration, such as a corner or a change of
direction. As in the first version of Reptile, all the in-
formation needed for new components in the data
chain came from the type, location and orientation of
the seed-forming component and those with it in the
data chain at the point where the move or change of
direction occurred. A new feature was that the program
took dimensional coordination into account only when
it was relevant to the concept. It did not rely on modular
coordination or a grid, but calculated the distances be-
tween the location points of elements in the data chain

Fig. 2a-b. Generative Reptile program, 1967-1968, (a) overgrowth forms developed from two different seeds, (b) overgrowth of an ob-
ject generated from a single seed unit (plotter printouts); source: J.H. Frazer, P. Janssen.

ARCHITECTURAE ET ARTIBUS - vol.15 - 3(57)/2023 ARCHITECTURAE ET ARTIBUS - vol.15 - 3(57)/2023 15

GENERATIVE AND EVOLUTIONARY MODELS IN THE DESIGN OF ARCHITECTURAL FORM - INSIGHTS FROM HISTORY

to determine the modules appropriate for the design
under consideration. In addition, the idea of "seeding
an idea" to produce different types of buildings was
extended to the concept of mutating "seed" details to
generate variants that met the requirements of diffe-
rent types of environments, especially when it came to
standard building structures. The individual mutations
could be created interactively and stored as variants,
which were referenced by an additional set of digits in
the item description in the data chain. Thanks to these
extensions, it was possible to develop large-scale bar
structures and create new ones composed of multiple
components [J.H. Frazer 1974].

Reptile elaborated - John H. Frazer (architect),
Richard Prakins (programmer) and Francisco Guerra
(research assistant) on The Cambridge University for
Cambridge Atlas Titan computer working with plotter
PDP7. Reptile being the first generative program aimed
at architects constituted a new design model and me-
thodology, which was developed in the following years
[J.H. Frazer 1979].

2. THE EVOLUTIONARY MODEL OF NATURE IN
THE GENERATION OF ARCHITECTURAL FORM
1980-1995

In the 1960s and 1970s, the evolutionary appro-
ach to design was more in the domain of engineering
than architectural design. It allowed finding the optimal
solution in response to computationally clearly defi-
ned selection criteria. Typically, evolutionary systems
allowed for the initial definition of an already existing
design, parameterizing those parts of the design that
were thought to need improvement. In the second half
of the 1980s, a Frazer-led research team at the Uni-
versity of Cambridge was already conducting fledgling
experiments on improving hardware performance in
terms of modeling and virtual representation, so that
the computer would become the designer’s “genera-
tive toolbox.” In addition, there has already been rese-
arch on communication modeled on the synapses of
neural networks [J.H. Frazer 1995]. It may be recalled
that in the late 1970s the first processor giving sup-
port to graphics systems was made available, and the
first microprocessor for computer graphics was made
available in 1977. This led to the development of the
first graphics program in 1978 General Purpose Pat-
tern Program (GPPP) along with its 3D version (GPPP3)
[F.N. Krull 1994]. GPPP3 had functions that allowed
the generation and transformation of geometric (rec-
tilinear) objects, random selection and combinatorial
operations, and animation. Curve fitting and spline-in
curve modeling functions were soon added. The same

year saw the development of Shape Processor Lan-
guage (SPL), a graphical language with an extended
data structure. Drawings generated by the Reptile sys-
tem containing more than 2,000 structural units and
24,000 vectors could already be executed. However,
the 8K Commodore Pet computer on sale at the time
did not have adequate graphics drivers for plotters so
that vector graphics could be plotted directly [J.H. Fra-
zer 1995].

Computer modeling, in all cases, depends on
the structure of the data, while graphical representa-
tion depends on how the data is transfomed. It is the
process of transformation that determines the potential
of the computer system model. In addition, the compu-
ting power of the computer, the structure of data stora-
ge and processing, and hardware solutions are impor-
tant. It should be recalled that the data structures and
interfaces of digital CAD systems were first designed to
develop the geometry of the form, not the geometry of
the relationships between components, which affected
the integration of computational tools.

In the early 1980s, the first concept of “plastic”
modeling was developed in opposition to the rigid im-
plications of solid modeling. The idea was to extract
higher-order information from the user about the re-
lationships between elements, not just geometric co-
ordinates. At the same time, links between computer
graphics and means of production are also being de-
veloped.

Beginning in 1983, connections between gra-
phical programs and computer-controlled equipment
such as lathes and milling machines were developed.
In 1985, the first educational solid modeling program
with an easy-to-use graphical interface was also deve-
loped. Released in 1987, the program allowed interac-
tive manipulation of three-dimensional forms and geo-
metric modifications using a three-dimensional cursor.
The user interface was called a “virtual workshop” be-
cause the program allowed the development of files for
fabrication [J.H. Frazer 1995].

2.1. Synthetic evolutionary model and Universal
Constructor system

John Holland’s 1975 publication of a genetic al-
gorithm in a high-level programming language (the syn-
tax and keywords are intended to make the program
code as easy as possible for humans to understand,
such as Fortran) opened a new debate about imitating
Nature through art, and especially about artificial life in
architecture.

In the late 1980s, a growing pro-environmental
consciousness supported the quest for new forms for
the built environment based on patterns drawn from

ARCHITECTURAE ET ARTIBUS - vol.15 - 3(57)/202316

K. JANUSZKIEWICZ, N. PASZKOWSKA-KACZMAREK

Nature’s creations. Research, in various fields, thus
concentrated on biomimetic studies and experiments
to find solutions that would make built forms as spa-
tially, energetically and materially efficient as biological
forms. In Nature, the information about the form that
evolves is encoded only genetically, while selection in-
volves the expression of this encoded information in
the external form of the organism. Genetic codes pro-
duce instructions for the development of form, but the
precise expression of these instructions is environmen-
tally dependent. The model of a form with artificial life
also involves a code that produces instructions that are
dependent on environmental influences, just as in the
real world, only that it is a code-script that evolves.

A typical evolutionary design model requires fo-
cusing on two tasks such as:

•	 codification of the parametric model and evolving
projects, i.e., development of rules of mapping,
which specify how parameters should be assi-
gned to the parametric model and evaluation
rules that determine how the model should be
evaluated;

• projects evolve in response to this environment,
and the generative system produces alternative
designs [J.H. Frazer and J. Frazer 1996].
The evolution model developed in this way (Fig.

3) then required that the parametric architectural con-
cept be written as a “genetic code.” This code would be
mutated and evolved by the generating system as a se-
ries of forms in response to the simulated environment.
These forms would then be evaluated, and the code of
selected models would be reused until a suitable form
was selected for prototyping in the real world. Achie-
ving such an evolutionary model required defining: the

genetic code (script), rules for developing that code,
mapping the code onto a virtual parametric model, as
well as defining the model development environment
and selection criteria [J.H. Frazer and J. Frazer 1996].

A typical evolutionary generating system, on the
other hand, ensured that mapping rules would create
forms from a coded set of parameter values by inser-
ting those values into a parametric model. The evolu-
tionary system evolves these parameter values. This is
defined as convergent (convergent) evolution by natural
selection (J.H. Frazer and J. Frazer 1996).

Convergent evolution by natural selection is not
the only possibility. In a book titled The Origin of Spe-
cies Darwin writes about the technique of artificial se-
lection used by breeders of racehorses or dogs [Ch.
Darwin 2003]. In this model, artificial selection by the
designer or user opens up the possibility of demon-
strating preferences. It can be useful as a way to deal
with ill-defined selection criteria, particularly concerns
about usage. It also provides an opportunity for the
designer to use his or her experience and intuition to
achieve faster results.

Nature also relies on divergence to keep a diver-
se gene pool active in order to cope with sudden chan-
ges, such as increasing predator success or changing
environments. The model proposed by John Frazer’s
research team also provided a divergent evolutionary
process for generating alternative ideas. This provided
a matrix of four possible combinations of natural/artifi-
cial selection and divergent/convergent evolution.

Evolutionary models and methods (like Fraze-
r’s model) are often based on techniques such as the
use of genetic algorithms developed by John Holland.
Holland saw the genetic algorithm as a direct analogy

Fig. 3a-b. Typical evolutionary model, (a) design model, (b) computer generating system – diagrams; source: J.H. Frazer, P. Janssen.

ARCHITECTURAE ET ARTIBUS - vol.15 - 3(57)/2023 ARCHITECTURAE ET ARTIBUS - vol.15 - 3(57)/2023 17

GENERATIVE AND EVOLUTIONARY MODELS IN THE DESIGN OF ARCHITECTURAL FORM - INSIGHTS FROM HISTORY

with the evolutionary processes of nature. It may be
recalled that his first book was aptly titled Adaptation
in Natural and Artificial Systems [J. Holland 1975]. The
process of natural selection can generate a wealth of
alternative experiments, and the better ones survive.
There is no single solution, no optimal solution, but
there is continuous experimentation. Therefore, Hol-
land did not see the genetic algorithm as a convergent
system.

In the early 1990s, John Frazer, began research
on introducing genetic algorithms into generative de-
sign systems. Frazer was one of the first to attempt
to extend the capabilities of CAD at the time to inclu-
de computational tools for generating form. For this
purpose, Frazer’s team built the Universal Construc-
tor in 1990, an electronic device designed to perform
complex geometric operations and visualize them.
This computer had 500 integrated circuits with 400
transistors each, and 6,400 diodes. The device was
designed so that each circuit could operate as a whole
on a common computer program. A separate appli-
cation was created for each user to access the pro-
gram and monitor screen. The user was encouraged
to add environmental features to the set of problems
being solved. The program allowed the inclusion of
a variety of applications, resulting in the introduction of
Cellular Automata computational models and making
them responsible for graphically determining the loca-
tion of design activities. Curve fitting was controlled by
a series of Fibonacci numbers, while the generation of
curves with complex geometry was based on spline
curves [J.H. Frazer 1995].

The structure of natural data gives ease of in-
put or change, and the amount of information affects
the level of sophistication of modeling and simulation.
Chromosomes in genetic algorithms are binary strings
of fixed length (chromosomes can also be encoded
with strings of integers or real numbers). This ease allo-
wed the development of the idea, treating architecture
as a form of artificial life, subject, like the natural world,
to the principles of morphogenesis, genetic coding, re-
plication and selection.

In 1991, the Universal Constructor was en-
hanced with an application based on an evolutionary
computational model. It contained 256 available cell
states that evolved as a series of chaotic loops, mi-
micking the “strings” of chromosomes. Each step of
evolutionary development was continually read out
and raised to accepted rules defining the pattern that
the evolutionary process would follow expanding the
complexity of the forms produced (Fig. 4). The applica-
tion allowed the creation of sequential configurations
of Euclidean solids (initiating) that evolved while the
parameters were controlled by a graphical mapping
program. It was also possible to intervene manually
regarding making selections and stopping the process
[J.H. Frazer 1995].

Imitating natural formative processes also requ-
ired taking into account the influence of environmental
factors on genetic code development, selection and
mutation. Between 1991 and 1992, several appro-
aches, such as data transmitters and simulation and
environmental modelling techniques, were refined or
developed from scratch.

Fig. 4. Stefan Seemuller, Evolving sequences of geometric solids made with Universal Constructor software, 1991;
source: J.H. Frazer 1995.

ARCHITECTURAE ET ARTIBUS - vol.15 - 3(57)/202318

K. JANUSZKIEWICZ, N. PASZKOWSKA-KACZMAREK

During this period, analytical tools were deve-
loped for simulating the path of the sun for a specific
latitude and determining the ‘light and shadow’ zones
for a given development. These tools are now widely
available in CAD packages. Based on the principles of
the Cellular Automata self-replicating computer mo-
del (1979), simulations of turbulent flows that could be
modelled were also developed. A system of classifiers
was also developed, which received information from
the environment and compared it with accepted clas-
sification rules to allow it to be fed into further opera-
tions. This linking of sensing and internal information
processing to each other was thought to be analogo-
us to an organism that processes information from its
environment, ‘thinks’ about it and acts accordingly. If
this action is successful, the organism is rewarded, and
the modelling of the information implemented by the
classifier system was a reinforcement of this success
[J.H. Frazer 1995].

Frazer’s research suggests treating Nature’s
evolutionary model as a generative tool to help, not
only in the creation of new forms, but also in the study
of the morphology of architecture, as exemplified by
the evolution of the Tuscan column made in 1993.

Genetic algorithms were used to perform the
evolution of the tuscan column, as part of an academic
research programme, by means of which information
on the proportions of the column was developed. Ba-
sed on the Jemes Gibbs template, which defines the
rules for drawing ancient orders, it was specified what

Fig. 5. John Frazer: evolution of the tuscan column by genetic algorithms, 1993; source: J.H. Frazer 1995.

the relationships between its parts were. The structure
and logic of the rules were programmed into the com-
puter, but a gene was substituted for each specified
proportion. Populations were generated with random
mutants (Fig. 5) [J.H. Frazer 1995].

The evolutionary design model presented was
somewhat successful in its time, although it offered
limited variability in the forms produced as only one
‘seed’ was evolved (the parametric model of the initial
configuration). As a result, the programmes offered lit-
tle scope for developing new ideas and forms.

2.2. Generative-evolutionary design model and
the Interactivator system

The next step in the development of design
tools that mimic biological formative processes was
a design model and computer system that combined
previous experience and followed advances in hardwa-
re and computer knowledge. The generative-evolutio-
nary approach to design was described by Richard
Dawkins as early as 1986 when he presented the con-
cept of a generative-evolutionary system that enables
the evolution of two-dimensional insect-like structures
through artificial selection [R. Dawkins 1986]. Dawkins’

idea no longer required the embedded generative sys-
tem to contain the idea of concept seeding. Instead,
he proposed that the generative rules be described in
a genetic code. The code would then be modified and
developed into a series of design models in respon-
se to a simulated environment, and the models would

ARCHITECTURAE ET ARTIBUS - vol.15 - 3(57)/2023 ARCHITECTURAE ET ARTIBUS - vol.15 - 3(57)/2023 19

GENERATIVE AND EVOLUTIONARY MODELS IN THE DESIGN OF ARCHITECTURAL FORM - INSIGHTS FROM HISTORY

be evaluated in that particular simulation environment
and a code of successful models selected. The selec-
ted code would then be used to repeat the cycle until
a specific stage in the development of the model selec-
ted for prototyping in the real world.

The generative-evolutionary design model iden-
tifies two tasks:

•	 Codification of the generation concept, where
rules and first principles of generation and evalu-
ation are established. Generation rules generate
projects from coded code scripts, and evaluation
rules evaluate the generated project;

•	 Evolving forms that develop in response to the
design environment. This second task requires
a generative-evolutionary system.

Fig. 6 a-b. Generative-evolutionary model (a) design model, (b) computer generation system, 1986, diagrams;
source: J.H. Frazer, P. Janssen.

The generative-evolution model required by the
generating system differs significantly from the previo-
us system, as the mapping step has been replaced by
a generative step (Fig. 6). This generative step has been
built into the generative system, for which a population
of code scripts is first created.

The evolutionary process therefore consists of
four stages:

forms are generated from scripts of the genetic 1.
code mediated by the form in question, its epi-
genetic development in the environment;
the resulting forms are evaluated through simu-2.
lation and analysis of their performance in their
environment,
the most successful specimens are selected; 3.

selected code scripts are transformed by gene-4.
tic operators such as crossing and mutation.
The above-mentioned four steps are then repe-

ated, and this process can, at any time, be interrupted
by the designer. Generative rules were usually deve-
loped to be very general and not intended to reflect
specific architectural concepts. However, all such ru-
les had to include preferences and constraints, resul-
ting in the forms created having certain characteristics
[J.H. Frazer 1995].

An important aspect of this approach is that
the generative system produces forms in response to
the environment. This environment consists of a de-
sign context and design criteria. Generative rules may
require information about the context and criteria. In

this way, the development process that ‘develops’ the
design becomes an adaptive process. This adaptive
process identifies subsequent structural modifications
in response to the environment and measures the per-
formance of different structures in the environment.
The adaptive process creates a sequence of structures
from a set of operators. Information extracted from the
environment influences the choices made. This con-
trasts with systems that use a mapping process. Map-
ping processes perform simple, non-adaptive transfor-
mations that do not interact with the environment in
any way.

Significant evolutionary-generative experiments
were conducted by Frazer’s team in the first half of the
1990s.

ARCHITECTURAE ET ARTIBUS - vol.15 - 3(57)/202320

By 1993, it was already possible to demonstra-
te what a genetic architecture language was. Work on
‘living’ systems and artificial life led to the development
of a set of scripts for the evolution of structure and form
and a genetic architectural language for its encoding.
A computer model was developed to the point where
it was able to perform the form generation process in
a simulated environment. Evolutionary space and time
were compressed so that the model could evolve over
a large number of iterative cycles. The theoretical fra-
mework was also developed so that it could be de-
monstrated interactively [J.H. Frazer, J.M. Silver 1994].

Such a display took place on 25 January 1995
at an exhibition entitled ‘Evolutionary Architecture’, the
work of Frazer, his wife and their students from the So-
ciety of Architects and the School of Design and Com-
munication at the University of Ulster. The demontrati-
ve model proposed a generative-evolutionary system
that was accessible via the internet with the intention
of encouraging widespread participation, and creating
biodiversity in the pool of genetic forms on which the
model depended. Janssen was involved in the deve-
lopment of a special demonstration version, known as
The Interactivator. Although the theoretical system was
simplified, all the key elements were presented. Par-
ticipation in the development of the model could be
achieved by being on display or in virtual form on the
Internet.

Indeed, Interactivator had a system that was
based on the sequential evolution of a family of cellular
structures in the environment. Each cellular structure
began to evolve from a single cell inheriting genetic
information from its ancestors. In the same way, each
cell in a cellular structure contained the same chromo-
somes that make up the genetic code. Cells divided

and reproduced based on the script of the genetic
code and the environment, with each new cell conta-
ining the same genetic information [J.H. Frazer 1995].
The data structure used to represent cellular growth
was based on a universal state space or isospatial
data structure, in which each cell in the world has up
to 12 equally spaced neighbours and can exist in one
of 4096 states, the state of a cell being the determined
number of spatial arrangements of its neighbours. The
local environment of a cell (in the world) could therefo-
re be encoded in a 12-bit binary string. For example,
a string type (110110000110) would spatially represent
a cell with six neighbours in specific positions. Chro-
mosomes control the growth and development of the
cell structure. A typical chromosome consisted of the
following 5 parts:

•		 Chromosome origin: Internet address from which
the chromosome originated;

•		 Condition: local cell environment (* unattended
situation);

•		 Action: the state of the cell in the next gene-
ration;

•		 Flag: whether the chromosome is dominant or
recessive;

•		 Strength: Efficiency of the chromosome in rela-
tion to the environment.
The developmental process of each family mem-

ber consisted of three parts - genetic search landsca-
pe, cellular growth and materialisation and was based
on a simple Goldberg classification system. The genetic
algorithm was used to ensure that future generations of
the system would learn from previous generations, and
to ensure biodiversity during the evolutionary process.
Each of the three developmental processes consisted
of cyclic processes.

Fig. 7. Genetic search process – diagram; source: drawing by P. Janssen,
J.H. Frazer et al. 2002.

K. JANUSZKIEWICZ, N. PASZKOWSKA-KACZMAREK

ARCHITECTURAE ET ARTIBUS - vol.15 - 3(57)/2023 ARCHITECTURAE ET ARTIBUS - vol.15 - 3(57)/2023 21

GENERATIVE AND EVOLUTIONARY MODELS IN THE DESIGN OF ARCHITECTURAL FORM - INSIGHTS FROM HISTORY

Fig. 8a-b. Interactivator, cellular growth process – diagram; source: drawing by J.H. Frazer,
P. Janssen, b) cellular growth sequencies; source: J.H. Frazer, P. Janssen 1995.

G e n e t i c S e a r c h L a n d a c a p e: Se-
lection criteria are not defined, but are an emergent
property of the evolutionary process and are based on
the relationship between chromosomes, cellular struc-
ture and the environment over time. For each member,
a genetic search landscape is generated that graphi-
cally displays the changing selection criteria. Form,
or the logic of form, emerges as a result of traveling
through this space of inquiry (Fig. 7a) [P. Janssen et
al. 2002].

C e l l u r a r g r o w t h: Chromosomes are
generated by sending them from a remote user, active
site, or as a function of selection, crossover, and mu-
tation within cellular activity, and are maintained in the
main chromosome pool. The physical environment de-
termines which part of the main chromosome pool will
become dominant. Each cell’s local environment then
determines which part of the genetic code is turned
on. The cell then reproduces and divides according to
this genetic code (Fig. 8a-b) [P. Janssen et al. 2002].

Fig. 9 a-b. Interactivator, materialization during cell division, a) materialization process; source: drawing by N. Paszkowska-Kaczmarek,
based on Frazer, Janssen, b) materialization sequence; source: P. Janssen, J.H. Frazer et. al. 1995.

ARCHITECTURAE ET ARTIBUS - vol.15 - 3(57)/202322

Fig. 10. Interactivator, the sequence of formation of the biometric structure of the form and its materialization; source: J.H. Frazer 1995.

ARCHITECTURAE ET ARTIBUS - vol.15 - 3(57)/2023 ARCHITECTURAE ET ARTIBUS - vol.15 - 3(57)/2023 23

M a t e r i a l i z a t i o n: unstable cells are
generated during cell division. In the next generation,
this remaining material creates an exclusion space in
the cellular space. This space of exclusion interacts
with the physical environment to create materialization.
Boundary layers are identified in unstable cells as part
of their state information, and an optimized surface is
generated to cover the structure. This material already
exists during the evolution of the model and initially in-
fluences the growth of cells of future generations (Fig.
9a-b) [P. Janssen et al. 2002].

In this context, a seed in a computer model
transfers its genetic codes to other seeds through cell
division and then disperses across all models (Fig. 11).
According to the fitness value that is calculated for the
computer medium, the success genes in genetic al-
gorithms are selected as they occur in Nature. Then,
these genes are subjected to crossover and mutation
operations, and various architectural forms are created
in the process of model operation.

The presented evolutionary model was organi-
zed taking into account a hierarchical approach to the
model itself and the data structure, which is recursive-
ly self-similar. The simulated environment in which the
assessment took place was modeled under exactly
the same conditions as the evolving structures. Not
only did the environment and structure evolve in the
same data space, but they could evolve together. Mo-
reover, competing structures could also evolve in the
same space. The environment, in this case, involved
user response and was modeled using virtual commu-
nities. It had a significant impact on the development

GENERATIVE AND EVOLUTIONARY MODELS IN THE DESIGN OF ARCHITECTURAL FORM - INSIGHTS FROM HISTORY

Fig. 11a-b. Interactivator: sequences of form formation by cell division; source: J.H. Frazer 1995.

of concepts using the language of genetic design.
Genetic algorithms were used to perform selection,
and normal interbreeding and mutations were used to
propagate the population. The model consisted of an
infinite number of data points that together constitute
the data space. Each point in the data space was in-
telligent in the sense that it knew where it was and why
it was there, and had a clear awareness of the spatial
relationships of its neighbors. The laws of symmetry
and symmetry breaking were used to control the de-
velopment of the model from the genetic code file. The

flow of information through the model took the form of
logical fields. The externalization of this data structure
was a process driven by modeling the form generation
process rather than the forms themselves [J.H. Frazer
et al. 2002].

The selection criteria were not programmed into
the model, but were an emergent feature of the evolu-
tion of the form model itself. For each element, a gene-
tic search landscape was generated graphically depic-
ting selection criteria changing over time based on the
relationship between chromosomes, cellular structure
and environment. The form, or the logic of form, was
created as a result of traveling through this space of
exploration [J.H. Frazer et al. 2002).

The Interactivator was an evolving environment
that was intended to respond both to the interactions
of exhibition visitors and to the atmosphere in the exhi-
bition space (Fig. 12). Visitors were drawn into inte-
raction by proposing genetic information that would
influence the evolution of the model. Sensors in the
exhibition space also influenced the evolution of the

ARCHITECTURAE ET ARTIBUS - vol.15 - 3(57)/202324

model, providing data on temperature, humidity, noise,
smoke, and so on.

Collaboration via the Internet took place in three
ways:

•		 the Internet was used to allow virtual visitors
to enter genetic information into the model, as
physically present at the exhibition;

•	 the model program allowed for remote data
downloading, but in such a way that it could
work on its own to replicate, and each replication
followed a different evolutionary path, the results
of which could also be fed back to the central
model to contribute to the gene pool;

•		 online access to the exhibition and book via
conventional means has been enabled through
a website so that you can understand the con-
text and observe the development stages of the
evolving understanding model [J.H. Frazer et al.
2002].
Interactive experiences gained at the Ulster

show were used to refine a generative computer model
that could, with the participation of residents, determi-
ne the desired or expected development of the built
environment. The evolutionary model was intended to
explain the transition from the past to the present and
predict trajectories of future possibilities, as a tool for
examining and assessing existing and future urban and
social phenomena.

2. 3. Interactivator: combined version
Combining the concept seeding model with the

generative-evolutionary model resulted in a new type of
model that integrates the advantages of both previous

design models. This approach was first proposed by
Frazer in 1990 [J.H. Frazer 1990] and later developed
in the book An Evolutionary Architecture [J.H. Frazer
1995].

The concept seeding model enables the gene-
ration of design forms that incorporate specific archi-
tectural concepts. However, the model does not use
an evolutionary system, and as a result, the designer
must discover generative modifications that will achie-
ve the most appropriate design. However, the genera-
tive-evolutionary model enables, in a complex way, the
evolution of forms adapted to their environment.

However, these forms do not contain any ar-
chitectural concepts and are therefore highly abstract.
Janssen’s combined model synthesizes previous mo-
dels, thus enabling the evolution of designs that, in ad-
dition to adapting to their environment, also incorporate
specific architectural concepts.

This combined design model generatively de-
veloped modifications that, in the case of the concept
seeding model, the designer had to introduce manual-
ly. These modifications made minor changes either to
the seed concepts or to the principles that transformed
them. The representation of these modifications was
a code-script, which allowed the evolutionary system
to also evolve the modifications. Generative modifica-
tions encoded in the code-scripts were used to gene-
rate designs, which were then evaluated and, based
on these evaluations, new populations of modifications
were created. This approach required rigorous defini-
tion of the scope of important generative modifications.
This rigorous definition was required to enable the de-
velopment of rules that could autonomously create

Fig. 12. Interactivator: action diagram; source: P. Janssen, J.H. Frazer et. al. 1995.

K. JANUSZKIEWICZ, N. PASZKOWSKA-KACZMAREK

ARCHITECTURAE ET ARTIBUS - vol.15 - 3(57)/2023 ARCHITECTURAE ET ARTIBUS - vol.15 - 3(57)/2023 25

GENERATIVE AND EVOLUTIONARY MODELS IN THE DESIGN OF ARCHITECTURAL FORM - INSIGHTS FROM HISTORY

new methods for generating modifications [J.H. Frazer
and J. Frazer 1996].

The combined design model defines three
tasks as:

• odification of generative concepts, i.e. first, as in
the previous model, generation and evaluation
rules are defined. However, in this case, the ge-
neration rules they must produce designs from
seed, not from scripted code;

•		 codification of architectural concepts, i.e. defi-
ning the germ of the concept that codifies a set
of architectural concepts;

•		 evolving designs, i.e. design alternatives evolve in
response to the environment design, which requ-
ires a generative-evolutionary system that inclu-
des seeding.

Fig. 13a-b. Combined generative-evolutionary model, a) design model, b) computer model generating system;
source: P. Janssen, J.H. Frazer et al. 1995.

The generating system here is similar to the ge-
nerative-evolutionary system described earlier. Howe-
ver, in this case the embedded generative system pro-
duces design forms based on concept seeds. The ge-
nerated designs are therefore the embodiment of a set
of architectural concepts codified by the seed. Coding
scripts encode generative modifications. These modi-
fications cause small changes either in the seed of the
concept itself or in the generating rules that transform
it. Generative modifications result in the production and
evaluation of different designs. Generative modifica-
tions that result in designs with the highest efficiency
scores are then selected. Genetic operators are then
used to create a new population generating modifica-
tions that will be used to generate a new population of
designs, and so on.

In the area of the generative-evolutionary design
system, the idea of seeding concepts was a significant
departure from the adopted research direction. Most
researchers developing divergent evolutionary systems
viewed all constraints and inclinations as negative ef-
fects that should be minimized (though never comple-
tely eliminated). Admittedly, the concept seeding ap-
proach reinforces constraints and inclinations, but at
the same time ensures that the generated forms reflect
the design ideas. Therefore, limitations and prejudices
are perceived as positive rather than negative pheno-
mena.

2.4. Janssen’s generative-evolutionary model
Patrick Janssen developed and refined Frazer’s

combined evolutionary-generative model, developing

a wide range of generation systems using concept
seeding. He also introduced significant modifications,
especially when it comes to codifying the design con-
cept and the overall structure of the model.

•		 The idea of codifying the initial architectural con-
cept has been refined. The architectural concept
must contain sufficient flexibility and adaptability
to enable the creation of various designs. The ar-
chitectural concept should therefore not predefine
the overall organization and configuration of the
designs, but should instead focus on defining the
design parts and their interactions and overlaps.
These interactions and overlays can be thought of
as defining the nature of designs without specify-
ing their overall form. Therefore, Janssen referred
to a set of architectural concepts as a pattern of

ARCHITECTURAE ET ARTIBUS - vol.15 - 3(57)/202326

form. However, the purpose of developing an ar-
chitectural form is the ability to use its concepts
to create various forms. Janssen defined “diver-
sity by the distinction made in evolutionary biol-
ogy between diversity and disparity [S.J. Gould
1989]. He referred to diversity as designs that dif-
fer in proportions and part dimensions, but have
the same general organization and configuration
of parts. The discrepancy concerned those proj-
ects that had a fundamentally different organiza-
tion and configuration of their parts.

•		 The second area in which the combined Frazer
model has been modified is its general structure.
Two tasks from Frazer's combined model have
been changed, i.e. concept codification and evo-
lving form have been introduced between the
two new tasks. At the beginning, Janssen placed
a task that focuses on the development of a form
diagram; at the end, he added a task that focuses
on developing a detailed project proposal. These
four tasks were grouped in pairs to create two
phases: the blueprint development phase and
the design development phase (Fig. 13). This di-
vision reflects two different levels of environment.

On the one hand, the schema creation phase will
produce a schema that is specific to a general
category of environment, called a niche schema
environment. On the other hand, the design de-
velopment phase creates a design that is specific
to one particular environment, called the design
environment. In both cases, the environment inc-
ludes both the criteria that the project must meet
and the context in which the project will exist [P.
Janssen et al. 2003].

The codification of the mold scheme also differs
from the Frazer model. In Frazer’s model, architectu-
ral concepts are codified into a concept seed, but it is
unclear to what extent this architectural concept influ-
ences the coding of other rules, such as development
and mapping rules. In Janssen’s model, codification of
the character schema affects all evolutionary rules and
data structures, including development and mapping
rules. The set of evolutionary rules and data structures
is collectively called an evolution schema. This evolutio-
nary pattern infuses the generative-evolutionary design
system with inclinations and constraints that reflect the
ideas developed by the design team.

Fig. 14. Two-phase generative-evolutionary design model
– diagram 1996; source: P. Janssen, J.H. Frazer et. al.

K. JANUSZKIEWICZ, N. PASZKOWSKA-KACZMAREK

ARCHITECTURAE ET ARTIBUS - vol.15 - 3(57)/2023 ARCHITECTURAE ET ARTIBUS - vol.15 - 3(57)/2023 27

Dividing the design procedure into two phases
made it possible for these phases to be implemented
in different ways:

•		 The first phase develops and codifies the natu-
re of the project. The architectural form will then
reflect the beliefs and preferences of the design
team (called the designer’s position) and will be
developed in response to the niche environment.
This niche environment can be defined before
finding a specific development environment. As
a result, this phase creates a general design unit
(evolution diagram) that can be reused across dif-
ferent projects;

•		 The second phase is the process of evolution and
details the form proposals for a specific design
task. The selected proposal will be tailored to the
project environment and assigned tasks that will
cover aspects such as site, space requirements,
performance goals and budget. Hence, at this
stage, a design element is created that cannot
be reused.

The operation of the generating system in the
generative-evolutionary model proposed by Janssen
(Fig. 15) is based primarily on population data. Each
evolutionary step takes specific data from the popula-
tion, applies the rules specified in the evolution sche-
ma, and then transmits the newly created data. The
computer hardware should be built to be able to iden-
tify a set of components of the generating system (so-
ftware) and propose a network configuration for these
components. These components were to use a num-
ber of technologies and software systems that existed
at that time, such as a computer program acting as
a client for services provided by the server.

The hardware configuration proposed by Jans-
sen (Fig. 16) is divided in its architecture into a program
operated by the server and a set of programs for the
client. The server program stores a population of pro-
jects in a database as well as a set of client programs
that communicate with the server. The file for each evo-
lution step is executed separately by the client. Subse-
quent clients take over the seed client, which allowed

GENERATIVE AND EVOLUTIONARY MODELS IN THE DESIGN OF ARCHITECTURAL FORM - INSIGHTS FROM HISTORY

Ryc. 15. A generating system in the generative-evolutionary design model - diagram 1996; source: P. Janssen, J.H. Frazer et al.

ARCHITECTURAE ET ARTIBUS - vol.15 - 3(57)/202328

the population to be initialized, and the visualization
client, which allows users to view a specific design in
the population [P. Janssen et al. 2004].

This asynchronous evolutionary process means
that any given client can be replicated many times. For
example, a prediction client that runs a specific simula-
tion program can be duplicated, thus allowing designs
to be simulated in parallel. Additionally, clients can run
on different operating systems, thus facilitating the in-
tegration of third-party CAAD simulation and analysis
programs.

Generative and evolutionary design involves
using the virtual space of a computer in a way analo-
gous to the evolutionary processes occurring in na-
ture. Although the techniques described could be
achieved with relatively simple design problems, the
architectural problems still required computing power
that exceeded the hardware standards available at the
time. The evolutionary model of nature proposed in
the 1990s as a process of creating an architectural
form was supposed to foster the achievement of sym-
biotic behaviors and metabolic balance characteristic
of the natural environment by the built environment.
Architecture came to be treated as a form of artificial
life, subject, like the natural world, to the principles
of morphogenesis, genetic coding, replication, and
selection.

In 1971, chemist Tibor Ganti provided an impor-
tant elaboration of the criteria of life in his seminal work
Principles of Life, in which he distinguished between
the criteria of actual life and the criteria of potential life.
It is about the criteria that an organism must meet in

order to be considered able to live and the criteria that
are necessary for an organism to survive life on Earth
[T. Ganti 1971]. The real criteria of life are: i) inherent uni-
ty - the system must be a coherent unit; ii) metabolism
– a living system must have the ability to metabolize;
iii) inherent stability – a living system must be inheren-
tly stable; iv) subsystem carries information - a living
system must have a subsystem that carries informa-
tion that is useful to the entire system; v) control pro-
gram - processes in living systems must be regulated
and controlled. The criteria for potential life are: growth
and reproduction, ability to inherit changes and evolu-
tion, mortality. Research on synthetic life covers similar
criteria, including (individual properties) metabolism,
inheritance, and evolution [B. Holmes 2006]. Synthe-
tic life must meet these criteria. They are derived from
the intense self-organization capacity demonstrated by
the articulation of biological materials at all size scales
studied. These criteria are analyzed and applications
discussed in terms of architectural application. At the
end of the 1990s, there were even attempts to make
a computer program “inhabit” the built environment,
enter its structure, read it, understand its development
principles and history, be able to capture its topogra-
phy, latitude and climate, and model its society and
economy. And then the computer program would start
asking for suggestions and proposing possible func-
tions and spatial solutions based on hardware stan-
dards [J.H. Frazer 1997].

The design techniques presented here implied
significant changes in the architect’s working methods.
First of all, they force us to rigorously define how an

Fig. 16. Hardware configuration for the generative-evolutionary design model, 1998; source: P. Janssen, J.H. Frazer et al.

K. JANUSZKIEWICZ, N. PASZKOWSKA-KACZMAREK

ARCHITECTURAE ET ARTIBUS - vol.15 - 3(57)/2023 ARCHITECTURAE ET ARTIBUS - vol.15 - 3(57)/2023 29

architectural concept is expressed in the genetic code.
Moreover, the architect must clearly define the crite-
ria for assessing the idea and be prepared to accept
Janssen’s concept of client and user participation in
the design process.

The use of generative-evolutionary tools in ar-
chitectural design also increases the role of the archi-
tect in the design process, as it becomes possible to
„sow” many more generations of new forms than could
be individually supervised, and to achieve a higher level
of sophistication and complexity far beyond the econo-
mics of normal office practice.

3. TOWARDS THE INTEGRATION OF METHODS
AND TOOLS

Imitating the works of Nature also means striving
for an artificial object to achieve properties that make
it equally efficient and effective in its environment. In
the context of natural morphogenesis, the formation
process extracts chemical properties and physical
material organizations. In the world of Nature, this is
the result of the influence of environmental factors that
influence morphogenetic movements externally and in-
ternally. Similar to natural morphogenesis, the process
of physically finding form emphasizes the appreciation
of material systems from the perspective of a bottom
-up design approach. However, morphogenesis in IT
spaces separates the process of materialization from
the process of form creation; in this way, material sys-
tems are imposed on the generated forms. Rationaliza-
tion and optimization methods are only an attempt to
reconcile the materialization process with the formation
process [A. Menges 2008].

Due to natural morphogenesis, it is expected
that computational procedures will use the digital ma-
terialization method, in which materialization is enco-
ded as an active controller within the digital formation.
Otherwise, distinguishing form generation from ma-
terialization requires another phase to impose a digi-
tal form derivative on the materialization processes.
Therefore, formation should treat materialization as an
embedded process that consists of both material and
production domains within the produced morphogene-
tic development.

For over a decade, research on computational
morphogenetic processes has promoted design de-
velopment by combining generative design techniqu-
es, manufacturing technologies, and analytical design
strategies [K. Januszkiewicz 2016]. The introduction
of these components means extending the linear de-
sign framework to include elements of linear design
processes.

3.1. Genr8: Evolutionary Algorithms and Growth
Algorithm in the System CAD/CAM

Morphogenetic and generative modeling tools
were not yet available in the 1990s a compact packa-
ge that would allow these tools to be used in a CAD/
CAM system. One of the goals of the Genr8 project
was to demonstrate that the combination of a growth
algorithm and an evolutionary algorithm is useful for
form exploration in the architectural design process. By
implementing these algorithms in C++, a programming
tool was developed that can be (and is) also used in
educational practice.

In 1997, the interdisciplinary research team
Emergent Design Group was established at MIT, which
included computer scientists and architects. The idea
was to explore the possibilities of synergy between
architecture, artificial intelligence, artificial life, engine-
ering and materials science in order to develop a pro-
totype of a program providing new modeling tools in
the CAD system. In 2001, Una-May O’Reilly and Mar-
tin Hemberg introduced the Genr8 program. This was
supposed to be proof that the concept of generating
surfaces by combining L-Systems and evolutionary
algorithms is useful in modeling architectural formsj
[U. Q’Reilly et al 2004].

It was intended that Genr8 would be treated as
a sketching tool that should be used early in the design
process. It was envisaged that this program would be
useful in conceptualizing form, which would then be
subjected to detailed definition and analysis in terms of
structure or material. The lack of structural and mate-
rial analyzes in Genr8 was expected to limit its specific
value [M. Hemberg et al. 2007]. However, the Genr8
environment can be configured to somewhat reflect
physical reality - adopting criteria and parameters that
are geometric in nature. This forces the designer to in-
terpret structural or material constraints (e.g. by intro-
ducing certain angles or distances between support
points).

Genr8 consists of two main components: the
HEMLS (Hemberg-Extended-Map¬ L-System) growth
engine and the Evolutionary Algorithm (AE) (Fig. 17).
The growth engine uses the HEMLS interpreter to
analyze how you prescribe. It geometrically interprets
the axiom and the set of rules for rewriting the analy-
zed system. The set of rewriting rules is a context-free
grammar. The growth process encoded in the HEMLS
engine is computationally linked to the simulated phy-
sical environment. This allows the architect to influence
this abstract environment and the depicted elements
that should interact with the growth process. It should
be noted that AE as a tool can only be (and was) used
with the growth algorithm.

GENERATIVE AND EVOLUTIONARY MODELS IN THE DESIGN OF ARCHITECTURAL FORM - INSIGHTS FROM HISTORY

ARCHITECTURAE ET ARTIBUS - vol.15 - 3(57)/202330

The growth algorithm, as the central element of
Genr8, is used here to generate surfaces. This algori-
thm is based on L-Systems, which are used to model
plant growth [P. Prusinkiewicz, A. Lindenmayer 1991].
The L-System is a grammar consisting of a seed and
a set of production rules, and a rewriting process in
which the production rules are repeatedly applied to
the seed and its subsequent states. In simple terms,
L-Systems can be considered as systems for rewriting
sequences of symbols. Combined with the graphical
interpretation of generated strings, they are a way of

generating graphics. The most popular method of gra-
phically representing L-systems is turtle graphics, in
which symbols are interpreted as instructions for an
imaginary turtle moving along patterns of lines in 3D
space. The L-System should be understood here as
a set of instructions on how to create a specific form,
rather than a detailed plan detailing each building plan.
The advantage of L-System is that at each stage of
growth, the entire surface will be modified simultane-
ously, and not by sequential addition of components,
and the form will acquire an organic appearance.

Fig. 17. Una-May O’Reilly i Martin Hemberg, Genr8 system model – diagram, 2001; source: U. Q’Reilly et al. 2004.

K. JANUSZKIEWICZ, N. PASZKOWSKA-KACZMAREK

Fig. 19. Map L-Systems in biology and Gren8
- formation of squares derivedby the HEMLS rewriting system

source: M. Hemberg et al. 2007

Fig. 18. Map L-Systems in biology and Gren8 - a model of cellular develop-
ment – planar graphs, source: M. Hemberg et al. 2007

ARCHITECTURAE ET ARTIBUS - vol.15 - 3(57)/2023 ARCHITECTURAE ET ARTIBUS - vol.15 - 3(57)/2023 31

Map L-Systems were originally invented as
a model for cellular development. This is a method of
rewriting planar graphs using cycles (Fig. 18). With ap-
propriate graphical interpretation, these graphs can be
used in a biological context to represent cellular struc-
tures. While L-System generates arboreal structure,
Map L-system generates graphs that can be interpre-
ted as surfaces. The original L-system map model is
designed for 2D only and to make it work in 3D, several
additions have been made to this model. This is how
the Hemberg Extended Map L-System was created
(HEMLS).

In Genr8, each growth step has three phases
(Fig. 19). They are illustrated starting from the seed
(top left). In the first phase, the area size is increased
by a simple scaling factor. Each vertex is moved away
from the geometric center of the surface, as indica-
ted by the arrows. In the second phase, the rewriting
rules are applied to each edge of the surface. Here
the edges of ‘A’ are split and the new vertices are
marked with circles. In the final phase, the branches
are drawn and connected. The same procedure is ap-
plied to the ‘B’ edge in the center panel down. The
marking of each edge is only shown in the upper left
corner and the lower right corner, which shows the
surface with new markings after one iteration of the
rewrite rules.

A limitation of the basic L-System model is that
it can only create arboreal topologies. To generate
surfaces, the Map L-systems Lindenmayer algorithm
[P. Prusinkiewicz, A. Lindenmayer 1991] should
be used.

In Genr8, the Map L-systems algorithm was
further extended to create 3D surfaces and named
Hemberg Extended Map L-systems (HEMLS). These
surfaces grow in a reactive environment simulating
the physical environment [M. Hemberg et al. 2007].
An example of a surface growing in an empty HEMLS
environment is shown in Fig. 18-19. HEMLS requires
a seed specification (or initial flat surface), a set of pro-
duction rules, and two additional parameters, forming
a prescribing system. The rewriting system shown in
Fig. 19 is built into Genr8.

The Genr8 modeling environment has a signi-
ficant impact on the result of the surface growth pro-
cess. There are two types of elements in this environ-
ment: forces and boundaries. The forces may be point
attractors or repellents that act like magnets, causing
the surface to grow towards or away from their loca-
tion (Fig. 20b). There is also a gravitational force that
uniformly directs growth along one of the principal co-
ordinate axes (Fig. 20a). Boundaries can be placed as
obstacles or used as bounding boxes to cordon off
a surface.

GENERATIVE AND EVOLUTIONARY MODELS IN THE DESIGN OF ARCHITECTURAL FORM - INSIGHTS FROM HISTORY

Fig. 20a-b. Square surface modeling environments a) modeling in a simulated gravity field, b) modeling in the force field of repellents;
source: M. Hemberg et al. 2007.

ARCHITECTURAE ET ARTIBUS - vol.15 - 3(57)/202332

A complex task would be to create a prescrip-
tion system that would allow manual management of
the growth process of a given surface. This is mainly
due to the difficulty of imagining what a given rewriting
system will look like after repeated iterations. Environ-
mental influences only exacerbate this problem. Fur-
thermore, additional complications would arise from
the difficulty of ensuring that the rewriting system is
syntactically correct. With this in mind, the Evolutiona-
ry Algorithm (AE) has been incorporated into Genr8.
AE automatically generates selectively adaptive and
syntactically correct rewriting rules. The designer exer-
cises high-level control over the process by defining
the fitness function and environment [M. Hemberg et
al. 2007].

Genr8 uses Evolutionary algorithms invented by
O’Neill and Ryan in 1997 called Grammatical Evolution
(GE) (Ryan, O’Neill 1998). EG is based on the Genetic
Algorithm (GA), and its advantage is that it combines the
features of Genetic Algorithms (GA) and Genetic Pro-
gramming (GP) [M. Mitchell 1996]. It applies to standard
genetic operations on a vector of fixed length expressed
as integers. These numbers are then used to generate
a specification of Backus-Naur Form (BNF) language
structures, which provides the basis for implementation
(numerically controlled devices). This grammar is repre-
sented by a set of production rules. This requires ad-
ditional mapping that does not exist in traditional GAs.
Grammatical Evolution provides genetic degeneracy.
This means that there are multiple gene encodings that,
once mapped, can be individually decoded. In the first
step of this two-step genetic mapping process, BNF (in
conjunction with Map L-System) Genr8 allows access
to different HEMLS universes. The application of Gram-
matical Evolution (GE) routines in the Genr8 system al-
lows a linear genome, as in the Genetic Algorithm (GA),
to be mapped to a tree structure, as in GP genetic pro-
gramming. This is achieved by mapping a set of inte-
gers to the desired language using a Backus grammar
representation Naur Form (BNF). This technique can
be applied to any language that can be represented
by a context-free grammar. All language constraints are
handled by BNF and GE, which ensures strict separa-
tion between the genome representation and the target
language. An important part of Evolutionary Algorithms
(EA) is fitness assessment, which guides the search for
better solutions. In design, there is no general way to
algorithmically determine a “good” surface. Developing
a useful framework for assessing suitability for design
applications is still an open research question [S.S.Y.
Wong, K.C.C. Chan 2009].

Genr8 uses a fitness assessment scheme that
gives the designer control over the evolutionary search

at a high level. This was implemented as a multi-pa-
rameter fitness function. Each parameter represents
a specific surface feature. The designer can set target
values for each parameter, as well as weights to deter-
mine the importance of each criterion. Important crite-
ria are: size (range in the x and y directions), symmetry,
soft boundaries (wall interference is allowed but may
be penalized as part of the fitness function), subdivi-
sions (a measure of surface quality), smoothness and
waviness (local and global measures of variability in Z
direction) [M. Hemberg et al. 2007].

The challenge for the designer is to understand
the abstract parameters and the behavior and results
of the evolutionary algorithm together with the growth
algorithm, and then to combine these activities with
the geometric and spatial arrangement of the designed
form. The designer gradually learns to recognize how
tools negotiate between various constraints and per-
formance criteria in the form development process. The
key, then, is to understand how the available settings
(including the environment) are related to this specific
design goal.

Integration with Maya is seamless. GENR8 is im-
plemented as a MEL (Maya Embedded scripting Lan-
guage) command and is used in the same way as any
other function in Maya.

However, MEL is based on a command line in-
terface, and for simplicity, a GUI has been implemen-
ted. This allows you to set all operating parameters.
The GUI also prevents the user from entering incorrect
combinations. HTML help files are also available. Bo-
undaries are set using regular Maya surfaces. You can
draw arbitrarily convex surfaces and they will be tre-
ated as faces by GENR8. Attractors and repellents are
placed using a special command. You can draw a cu-
rve and this curve will be used as the starting point for
growth (it will replace the genotypically encoded axiom,
which is always a regular polygon). Surfaces are drawn
in separate layers. It is also possible to save both the
grammar, the genome and the actual surface of Maja.

Genr8 is a collaborative creative tool, where the
designer’s role is highly personalized and the design
process follows a unique trajectory. Since 2003, Genr8
has been used in student projects as part of the Emer-
gent Design and Technologies (EmTech) program at
Architecture Associate in London.

The goal of the Butterfly Machines project was
to develop a chair (Fig. 21a-b). First, several sets of sur-
faces were generated using Hemberg Extended Map
L-Systems (HEMLS) to intersect themselves. By gra-
dually changing the parameters and the environment,
a whole set of self-intersecting shapes was obtained.
Each set is a parametric variation of the system resul-

K. JANUSZKIEWICZ, N. PASZKOWSKA-KACZMAREK

ARCHITECTURAE ET ARTIBUS - vol.15 - 3(57)/2023 ARCHITECTURAE ET ARTIBUS - vol.15 - 3(57)/2023 33

GENERATIVE AND EVOLUTIONARY MODELS IN THE DESIGN OF ARCHITECTURAL FORM - INSIGHTS FROM HISTORY

Fig. 21a-b. Butterfly Machines project, a) modeling a self-intersecting surface in response on the assumed position of attractors and
repellents in the force field, b) two selected variants; source: Steven Fuchs, 2005.

ARCHITECTURAE ET ARTIBUS - vol.15 - 3(57)/202334

ting from rewriting the square (Fig. 21a). Each set had
a different location of attractors and repellents. Their
arrangement was adopted to promote the chance of
self-intersection of the surfaces during the growth pro-
cess. Each surface “grew” along the vertical axis (time
axis). Two variants were chosen due to aesthetic con-
siderations in relation to the amount of self-intersecting
surfaces and ergonomic considerations (Fig. 21b). Sur-
face ergonomics were assessed using a script in Digi-
tal Projects/Catia [U. Q’Reilly et al. 2004].

3.2. Genr8: 3D surface modeling and fabrication
Genr8 allows you to model and produce funda-

mentally different objects by using different methods
of interpreting a given surface introduced as a “grain”.
These can be both flat 2D and bi-curvaceous 3D surfa-
ces. The program is a collaborative creative tool where
the designer’s role is highly personalized and the de-
sign process follows a unique trajectory.

Three different Genr8 surfaces with the same
values but with different degrees of complexity in their
articulation (Fig. 22). These surfaces are triangulated
and unfolded to create a pattern that can be used for
laser cutting and scoring. The first column shows the
contours obtained from the Genr8 surface and the se-
cond the triangulation obtained with Maya. The third
column shows the developed version, and the last one
is photos of the completed surfaces U. [Q’Reilly i inni
2004].

Genr8, having semi-automatic spatial sketching
tools, can propose practical “design solutions” in
a specific environment, as well as explore exploitation
possibilities, which is inherent in the AE evolutionary

algorithm. The results of the combined possibilities
and limitations of the manufacturing and assembly
processes included directly in the process of gene-
rating computational forms will be presented in an
experiment with a variable curvature contoured sur-
face (Fig. 23).

 The experiment begins by describing the geo-
metry of a surface with variable curvature as a sys-
tem of tangent and perpendicular construction planes
(Fig. 23). These flat-sided elements will then be used
as input to the manufacturing process, which involves
computer-aided laser cutting of sheet material. Genr8
was used to initiate the coevolution of two interlocking
surfaces with increasingly complex geometric articu-
lation. Therefore, a number of geometric constraints
were used to select the parameters of the efficiency
function, thus ensuring that the elements were properly
distributed planarly [M. Hemberg et al. 2007].

Evolutionary tools were used to initiate a pro-
cess in which two curved surfaces joined together ac-
cording to geometric performance criteria. The expe-
riment was based on geometric data obtained from
several surfaces with different curvature. They are de-
scribed as a system of perpendiculars and tangents.
The geometric constraints concerned only the local
curvature and were applied to the entire surface. In an
environment defined by attractive and repulsive forces,
many generations have been grown from two connec-
ted surfaces. Geometric features, such as local chan-
ges in curvature and the adopted surface direction
(Normal), redefined the position and number of planes,
crossing multiple populations (Fig. 24a). The Normal
surface is defined as a vector unit for the local surface

K. JANUSZKIEWICZ, N. PASZKOWSKA-KACZMAREK

Fig. 22. 3D surface modeling and fabrication; source: C. Goncalves, 2004.

ARCHITECTURAE ET ARTIBUS - vol.15 - 3(57)/2023 ARCHITECTURAE ET ARTIBUS - vol.15 - 3(57)/2023 35

Fig. 23. A screenshot of the surface divided into production sections and the stages of the division and aggregation process;
source: A. Menges, 2003.

and constitutes the first derivative of the position by
indicating the actual dimensions for the designed sur-
face. The basic geometric relationships were relatively
simple, but through nonlinear evolution the surface ar-
ticulation became more complex. The morphological
process and common geometric performance criteria

made it possible to maintain the logic of the material
system so as to directly proceed to laser cutting of
the necessary elements (Fig. 24b). The result of this
experiment demonstrates a level of complexity and
consistency that is difficult to achieve in conventional
design approaches.

GENERATIVE AND EVOLUTIONARY MODELS IN THE DESIGN OF ARCHITECTURAL FORM - INSIGHTS FROM HISTORY

Fig. 24a-b. A population grown from connected surfaces and
a fragment of the surface composed of cut elements cut from sheet metalin CNC technology; source: A. Menges 2003.

ARCHITECTURAE ET ARTIBUS - vol.15 - 3(57)/202336

 The design of the pneumatic strawberry bar co-
ver was intended to exploit the evolutionary dynamics
of reproduction, mutation, competition, and selection
as design strategies (Fig. 24). The possibilities and limi-
tations of form creation were examined from the initial
stage of its generation to the actual production pro-
cess. Performative patterns were sought that evolve as
a species in populations and subsequent generations
while maintaining structural load-bearing capacity and
geometric features [M. Hemberg et al. 2007].

The starting point for the Genr8-based growth
process was a relatively simple pneumatic compo-
nent, geometrically defined to cut out two trapezoidal
surfaces that will be sewn together during fabrication.
Once filled with air, each component acquires a thre-
e-dimensional form determined by the length of the
surface in relation to the points defining it. These sim-
ple geometric relationships, defined as an overall 3D
cutting pattern, formed the basis for the subsequent
evolutionary process. Instead of developing only one
surface, a scheme based on the coevolution of three
subpopulations was used. A feedback loop was ini-
tiated in which the most recently evolved surface was
used as a bounding box for the current surface. This
method preserved the properties of the pneumatic
element in the larger system, but removed distinctions

between environmental constraints and individual re-
sponse. The next feedback loop used digital forming
in dedicated membrane engineering software, and in
addition, test results on physical models also influen-
ced the evolutionary process and its evaluation.Genr8
generated over 600 generations in which 144 pattern
species with appropriate geometric features were
identified and cataloged. Since the structural behavior
of the designed pneumatic system was based primari-
ly on specific geometric relationships, individuals were
selected that shared these geometric features. The
genotype of these individuals contained the genomes
of the three geometry-defining surfaces, establishing
a degree of phenotypic plasticity that allowed the re-
sulting pneumatic system to adapt to the limitations of
digital pattern cutting and computer-aided manufactu-
ring processes [M. Hemberg et al. 2007].

The examples presented show how two coopera-
ting algorithms can be used, i.e. the Evolutionary Algori-
thm (AE) and the growth algorithm based on L-Systems.
This also poses a significant challenge in understanding
and applying the tools: how to best use Genr8 to achieve
your goals. The designer’s task, therefore, is to come up
with a way to express his design through criteria in a way
that is applicable within Genr8. A designer using Genr8
does not need to understand the algorithmic details of

K. JANUSZKIEWICZ, N. PASZKOWSKA-KACZMAREK

Fig. 25. Covering the strawberry bar; source: A. Menges, 2003.

ARCHITECTURAE ET ARTIBUS - vol.15 - 3(57)/2023 ARCHITECTURAE ET ARTIBUS - vol.15 - 3(57)/2023 37

the program, but must have a coherent and sufficiently
accurate mental model of how the tools will behave.
Genr 8 is the first program aimed at architects that
combines geometry modeling with a computer-aided
fabrication process. Integrating evolutionary and ge-
nerative computing methods and physical environment
modeling techniques, this system is an essential tool for
architects to creatively model surfaces and structures.
For the first time in history, architects can model the
shape of the form in correlation with the material and
means of production at any scale.

CONCLUSIONS

The development of tools imitating form-forming
morphogenetic processes presented here demonstra-
tes that their applications in architectural design require
integration and ease of use in CAD. Indeed, the imple-
mentation of generative and evolutionary tools to create
design assumptions enables architects and engineers
to use computational morphogenesis in the creation of
new architectural forms and structures.

Morphogenetic design thus appears as the use
of algorithmic processes or rules and principles to ob-
tain design solutions. Rules for generative morphoge-
netic systems can be specified in various ways, e.g.
by verbal grammars, diagrams, geometric transfor-
mations or command scenarios. Generative systems
have varying degrees of control from automated to
step-by-step manual. Using these methods requires
the architect to approach the creative process diffe-
rently than before. This is a significant change, becau-
se before the IT revolution, the theory and practice of
architecture focused primarily on form, whose shape
or relationships of parts were supposed to imitate the
creations of Nature. New aspects of the creation of
form were studied in Poland by Adam M. Szymski.
Drawing on his knowledge of the human sciences,
he conducted comparative analyses of the creative
process and the processes of systemic design, and
demonstrated the topological nature of the geometry
of their systemic relationships, impossible to depict at
the then level of development of computer technology
[A. Szymski 1997].

Nowadays, architects are turning to computer-
based morphogenetic tools and generative systems to
study the influence of various factors on form. They
borrow them from other disciplines and use them to
design buildings and materials. The most widely used
are: cellular automata, L-Systems, fractals, Voronoi
diagrams, shape grammars and genetic algorithms.
This is because the development of computational
morphogenesis follows the behaviour of natural sys-

tems resulting from internal interactions between dif-
ferent layers of information. This method supports
a computational framework for creating layers of infor-
mation for modelling morphogenesis. The complexity
of this framework cannot be simplified to a top-down
system due to emergent behaviours that result from
interactions between low-level elements. Therefore,
computational morphogenesis explores the links be-
tween the two levels of micro and macro interactions
to ensure self-organisation in the internal components
of the form.

The development and dissemination of morpho-
genetic design tools in CAD integration is a promising
alternative for future climate-change and sustainability-
oriented architecture.

LITERATURE

1. 10 AE 2009, only available on-line: https://edu.
pjwstk.edu.pl/wyklady/nai/scb/wyklad10/w10.htm

2. Darwin Ch. (2009), The Origin of Species, Signet,
Reprint, 150th Anniversary Edition, London.

3. Dawkins R. (1986), The Blind Watchmaker: Why the
Evidence of Evolution Reveals a Universe Without
Design, Norton & Company, Inc, London.

4. Frazer J. H. (1974), Reptiles, “Architectural Design”,
April, 231-239.

5. Frazer J. H. (1990), a Genetic Approach to Design –
Towards an Intelligent Teacup, in: The Many Faces
of Design, Nottingham.

6. Frazer J. H. (1995), The Evolutionary Architecture,
AA publication. London.

7. Frazer J. H. (1997), The Groningen Experiment.
Global Co-operation in the Electronic Evolution of
Cities, CAADRIA’97, Proceedings of the Second
Conference on Computer Aided Architectural Design
Research in Asia, April, 345-353.

8. Frazer J. H. (2002), Creative design and the
generative evolutionary paradigm in: Creative
Evolutionary Systems, red. P. Bentley and D. Corne,
Morgan&Kaufmann Publishers, San Francisco,
253-257.

9. Frazer J. H., Connor J. M. (1979), a conceptual
Seeding Technique for Architectural Design, PArK
79, Proceedings of the International Conference on
the Application of Computers in Architectural Design,
Berlin (Online Conferences with AMK), 425-434.

10. Frazer J. H., Frazer J. M. (1996), The Evolutionary
Model of Design, in: Asanowicz A., Jakimowicz A.
(ed.) Approaches to Computer Aided Architectural
Composition, Technical University of Bialystok,
Białystok, 105-117.

11. Frazer J. H., Frazer J., Liu X., Tang M., Janssen
P. (2002), Generative and Evolutionary Techniques
for Building, Generative Art 2002: 5th International
Generative Art Conference GA 2002, 11-13
December, Italy, Milan, 301-316.

12. Frazer J. and Janssen P., Generative and
Evolutionary Models for Design, School of Design,

GENERATIVE AND EVOLUTIONARY MODELS IN THE DESIGN OF ARCHITECTURAL FORM - INSIGHTS FROM HISTORY

ARCHITECTURAE ET ARTIBUS - vol.15 - 3(57)/202338

Hong Kong Polytechnic University, Hong Kong
(only available on-line: https://www.google.com/
search?client=firefox-b-e&sca_esv=44922cbe31
9e9a1e&q=Frazer+Interactivator&tbm=isch&sour
ce=lnms&sa=X&ved=2ahUKEwioq6PAxIyEAxXQ
HBAIHTduBfoQ0pQJegQIDBAB&biw=1819&bih
=761&dpr=1#imgrc=VINyWSTy94L0qM [access:
05.12.2023].

13. Frazer J.H., Silver J. M. (1994), The genetic
language of architecture – from living systems to
artificial life, “Projects Review”, Vol. July 1994,
198-205.

14. Ganti T. (1971), Azelet prince-piuma, Gondolat,
Budapest; also: Ganli T. (2003) The Principles of
Life, Oxford University Press, Oxford.

15. Gould S.J. (1989), Wonderful Life: The burgess
shale and the nature of history, Vintage, London.

16. Hemberg M., Menges A., Q’Reilly U-M, Jonas
K. (2007), Genr8: Architects’ Experience with an
Emergent Design Tool, in: J. Romero, P. Machado
(ed.), The Art of Artificial Evolution, Springer Berlin-
Heidelberg, 167-188.

17. Holland J.H. (1975), Adaptation in Natural and
Artificial Systems, University of Michigan Press, Ann
Arbor, MI, USA.

18. Holmes B. (2005), Alive, The race to create life
from scratch, “New Scientist” Iss. 2486, 12 February
2005, 28-34.

19. Janssen P., Frazer J.H., Tang M-xi. (2002), Evolu-
tionary Design Systems and Generative Processes,
“Applied Intelligence”, Vol. 16, 119-128.

20. Janssen P., Frazer J. H., Liu Xi., Tang M. (2003),
Evolution Aided Architectural Design: An Inter-
net based evolutionary design system, Proceed-
ings of the 9th Europe IA International Conference,
157-188.

21. Janssen P., Frazer J. H., Liu Xi., Tang M. (2004),
Evolutionary Design Exploration Systems, Proceed-
ings of the International Conference on Construction
Information Technology (INCITE 2004), 123-132.

22. Januszkiewicz K. (2010), O projektowaniu
architektury w dobie narzędzi cyfrowych. Stan

aktualny i perspektywy rozwoju, Oficyna Wyd. PWr,
Wrocław.

23. Januszkiewicz K. (2016), Projektowanie
parametryczne oraz parametryczne narzędzia
cyfrowe w projektowaniu architektonicznym,
„Architecturae et Artibus”, Vol. 8, No 3, 43-60.

24. Krull F.N. (1994), The Origin of Computer Graphics
within General Motors, “IEEE Annals of the History
of Computing”, Vol. 16, No. 3, 40-55.

25. Menges A. (2008), Integral formation and
materialization: computational form and material
gestalt, in: Manufacturing Material Effects, Kolarevic
B. and Klinger K. R. (ed.), Routledge, New York,
195-210.

26. Mitchell M. (1996), An introduction to genetic
algorithms, MIT Press, Cambridge MA, USA.

27. Paszkowska-Kaczmarek N. (2022), Problem
mimesis w architekturze w dobie morfogenetycznych
narzędzi projektowania, rozprawa doktorska
niepublikowana, promotor K. Januszkiewicz, ZUT,
Szczecin.

28. Prusinkiewicz P., Lindenmayer A. (1990), The
algorithmic beauty of plants, Springer-Verlag New
York Inc., New York.

29. Q’Reilly U-M., Hemberg M., Menges A. (2004),
Evolutionary Computation and Artificial Life in
Architecture: Exploring Potential Generative and
genetic Algorithms as Operative Design Tools,
“Architectural Design”, Vol. 74, No. 3, 48-53.

30. Simms K. (1991), Artificial Evolution for Comput-
er Graphics, “Computer Graphics”, Vol. 25, No. 4,
319 -328.

31. Szymski A.M. (1997), Twórczość architektoniczna.
Wstęp do teorii projektowania systemowego
(elements of system designing theory), Prace
Naukowe Politechniki Szczecińskiej, nr. 101,
Instytut Architektury i Planowania Przestrzennego,
Szczecin.

32. Wong S.S.Y., Chan K.C.C. (2009), EvoArch: An
evolutionary algorithm for architectural layout
design, “Computer-Aided Design”, Vol. 41, No 9,
649-667.

K. JANUSZKIEWICZ, N. PASZKOWSKA-KACZMAREK

