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Abstract 
This paper explores the possibilities of the use of computer-aided design models focused on imitating the works of Nature, 
its form-forming processes and behaviors. Tracking the development of the cybernetic models aimed at architects, the 
achievements of John H. Frazer and his team of scientists are presented. These are the first working morphogenetic mo-
dels addressed to architects that use generative and evolutionary tools in search of new architectural forms. Models and 
design strategies developed between 1968 and 1995, including the Reptile System, the Interactivator and the Janssen 
Model, are presented. The IT solutions used in them provided the basis for the creation of modern computational tools 
coupled with digital technology. 
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INTRODUCTION

The creative potential of information media has 
opened up a new dimension in the design of architectu-
re, especially oriented to imitate the works of Nature, its 
formative processes and behavior through generative 
and evolutionary design tools. Today, the instrumenta-
lization of these processes is changing the approach to 
the design of buildings by bringing designers closer to 
creating architecture that is compatible with the natural 
environment, not only visually, but also in terms of ac-
ting like a living organism. The growing current interest 
in imitating natural processes through computer tools 
rocks the analysis of primitive scientific experiments, 
making it possible to synthesize information to con-
struct a coherent description of events that took place 
in the 1970s and set the directions of modern research. 
Thus, the cognitive scope of a specific slice of reali-

ty is expanded, which is the primary goal of scientific 
research, thus filling a gap in the theory and history of 
architecture in the second half of the 20th century. 

Generative design tools are what are often cal-
led morphogenetic tools. They originate from the scien-
ces and are used to produce 2D and 3D patterns and 
forms with complex geometry. They are mathematical 
models that describe states or phenomena that occur 
in the natural world, although they can only be a ma-
thematical operation. Their name (Latin: generare - to 
give birth) refers to such methods of applying mathe-
matical symbols and relations, which are used to pro-
duce states of increasing complexity corresponding to 
established rules*. 

Synthetic evolutionary algorithms, on the other 
hand, mimic the mechanisms of evolution, the same 

*A mathematical model is a finite set of mathematical symbols and relationships and strict rules for operating with them. They refer to spe-
cific elements of the modeled fragment of reality. Modeling is used to learn about a given process by replacing it with a simplified layout 
that reflects selected characteristics of the process. The mathematical description of the model is presented in the form of a system of 
algebraic or differential equations. See: Jakub Gutenbaum, Modelowanie matematyczne systemów, wyd. III, Instytut Badań Naukowych 
PAN, Warszawa, 2003.
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ones found in biology. It is a set of methods and techni-
ques that includes not only genetic algorithms, but also 
genetic programming and evolutionary strategies. Evo-
lution, is now an indisputable scientific fact, documen-
ted by evidence derived from many fields of science. 
The essence of evolution is the combination of random 
(undirected) changes in genotype with strictly directed 
environmental pressures. 

It proceeds according to the following general 
principles [10 AE 2009]:

•	 The genotype of an individual undergoes modifi-
cations during reproduction. These changes can 
result either from small, random mutations, or 
from mixing (crossing) traits of parental individu-
als;

•	 Changes in the genotype cause changes in the 
phenotype of offspring individuals, which affects 
the degree of their adaptation to the environment 
(subject to evaluation by means of a goal func-
tion);

•	 Changes in the genotype are random in nature. 
Changes favorable to an individual occur as often 
as unfavorable or indifferent ones;

•	 Individuals are evaluated by comparing their ad-
aptation to a given environment. Those that are 
better adapted are more likely to reproduce;

•	 Less-adapted individuals succumb during com-
petition for limited environmental resources and 
perish;

•	 Changes (mutation, crossover) are subject to the 
genotype of the individual, while selection is sub-
ject to phenotypes.
Biological evolution drives morphological diver-

sity through genetic variation and results in high levels 
of adaptation, efficiency and resource efficiency. The-
refore, a synthetic evolutionary algorithm modeled on 
biological evolution is applied to optimization tasks and 
modeling

Generative design tools can be divided into two 
groups [N. Paszkowska-Kaczmarek 2022, p.117]:

•	 Tools that mimic the formative processes found 
in Nature: Cellular Automata, L-systems, evolu-
tionary and genetic algorithms;

•	 Mathematical tools-objects (specific type of sets) 
such as: Fractals, Voronoi Diagrams,

•	 Grammars of of shape, can describe the geome-
tric results of natural formative processes. 
In the design of architectural forms, the tools of 

the two groups are often complementary. They inclu-
de techniques, both digital and computational models 
that are used to derive and transform form, raising it to 
a higher level of complexity, both formally and structu-
rally, in an effort to obtain high environmental perfor-
mance. The use of generative tools and computational 

models that mimic natural formation processes in de-
sign practice still requires the integration of methods 
and techniques and tools that work together associati-
vely in a CAD/CAM system. 

Although the basic computational models of na-
tural formation processes were developed before the 
computer revolution, their implementation into com-
puter systems was gradual, with the development of 
computational capabilities and computer memory. 

Tracing the development of generative tools 
aimed at the architect, it is difficult to overlook the 
achievements of John Fresher and the team of scienti-
sts he led. Thanks to them, the second half of the 20th 
century saw the development of the first action models 
that use generative and evolutionary tools that can be 
used in the design of architectural form.

1. SEEDING AN IDEA 

Between 1968 and 1995, the first design mo-
dels were developed using generative tools and evolu-
tionary tools. Each model defines a set of tasks to be 
performed by the design team, and in each case one 
of the tasks requires generative or evolutionary design 
tools. These models matched the capabilities of the 
hardware and the state of the art in computer science 
at the time. They can be described as follows: 

- Generative design models are used to generate 
a large number of design alternatives that vary wi-
dely. The computer systems developed for them 
define a complex growth process that transforms 
the coded seed into a design. By making slight 
modifications to the transformation process or 
just the shape of the seed, alternative designs 
can be generated

- Evolutional design models were used to develop 
designs adapted to their environments. These 
models relate to the neo-Darwinian model of evo-
lution by natural selection. The computer system 
then enables a cyclic process in which popula-
tions of design shapes are constantly manipula-
ted to ensure that the population as a whole gra-
dually evolves and adapts.

- Generative - evolu tional design models take the 
evolutionary process of nature as the process of 
creating architectural form. Such computer-based 
evolutionary systems consist of a cyclic process 
that manipulates the entire population of design 
shapes. Here, the generative system uses code 
scripts of instructions to create computer models 
of alternative designs. These designs are used to 
simulate the creation of prototype forms, which 
are then evaluated based on their performance 
in the simulated environment. By mutating and 
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manipulating the code scripts, new forms are ge-
nerated. There can be multiple evolutionary sta-
ges processed in a short period of time, and the 
emerging forms are often unexpected.
The aforementioned design models and their 

corresponding generating systems were based on 
a common strategy called “seeding an idea” (for a proj-
ect), or initial configuration, which John Frazer explained 
as follows [J.H. Frazer 1995]:

“If architectural concepts developed by desi-
gners could be captured and codified in a generic form, 
the generating system could invoke them to generate 
designs that embody those concepts. This approach 
to capturing and codifying architectural concepts is re-
ferred to as idea seeding.” [J.H. Frazer 1974, p. 231]. 

When adopting an “idea seeding” strategy in 
a design model, three tasks should be defined:

•	 codification of generative concepts where a set 
of generative rules is defined that can transform 
the seed of a concept into a design;

•	 codification of architectural concepts where the 
seed of an idea is defined, which already contains 
certain architectural concepts;

•	 project generation where projects are generated 
in response to the project environment (which in-
cludes both context and criteria), which requires 
a system and tools that generate.
It should not have been assumed that the tasks 

identified by such a design model were mutually inde-
pendent. Nevertheless, in most cases they developed 
in parallel.

The above diagrams summarize the “idea se-
eding” strategies for the design model and for the ge-
nerating system. For the design model, the diagram 
(Fig.1a) identifies specific tasks to be performed by the 
project team, with each task requiring specific inputs 
and resulting in specific outputs. Input and Output out-
puts are shown in oval frames, while tasks are shown 

Fig.1a-b. “Seeding the idea” model, a) design model, b) computer generation system, diagrams; source: J.H. Frazer, P. Janssen.

without frames. In contrast, the diagram (Fig.1b) shows 
a schematic of the generating system required by a de-
sign model based on an idea seeding strategy. In this 
case, information defined independently of the system 
is shown in frames, while information contained in the 
system is displayed without such frames [J.H. Frazer, 
J.M. Connor 1979].

A generating system based on the initial con-
figuration or “idea seeding” is not itself a cyclic sys-
tem. The system generates a single form proposal from 
a single seed in response to the design environment. 
However, the premise was that the designer explores 
a range of design possibilities, making small generative 
modifications to either the germ of the concept or the 
generative rules. The result is a cyclical process led by 
the designer. The first attempt to implement this ap-
proach was the Reptile System developed, in its first 
version in 1968 [J.H. Frazer 1974]. 

1.1. REPTILE 1968-1974 Generative System
The Reptile generating program and system, 

developed between 1968 and 1974 by British architect 
and scientist John H. Frazer, made a breakthrough in 
computer design methodology and building thinking. 
The Reptile generating system was able to create 
a wide range of multi-space roofs from just two basic 
structural units. These units could be positioned in 18 
different ways relative to each other, providing more 
than three hundred combinatorial possibilities. 

Manual drawing of objects, especially those 
composed of repeated components and their perspec-
tive views, necessitated the development of a compu-
ter program to facilitate the process. However, in 1967 
the capabilities of computer hardware were limited, not 
only in terms of speed and memory, but also in terms 
of output graphic representation. In 1971, the Reptile 
System was enhanced with additional features, and 
the generating system was already capable of semi-
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automatically producing the forms of complete archi-
tectural objects (Fig. 2).  

The basic data structure was created and han-
dled by a series of machine code subroutines and func-
tions (written as binary numbers directly for execution 
by the processor). These allowed unit descriptions to 
be retrieved, deleted or updated, and additional units to 
be entered. The seed for seeding here was a minimal, 
closed configuration of units that included all possible 
orientations, but not necessarily in all possible combi-
nations. Site development was initiated by spreading 
the data describing the structure of the units that make 
up the selected seed in chained units, from the top of 
the seed downward in a clockwise direction. The lo-
cation and orientation of the units were determined by 
four integers. The first two numbers specified the loca-
tion on a two-dimensional grid with axes at an angle of 
600; the third integer specified the depth or level of the 
unit in the structure, and the fourth the orientation of 
the unit. Such a description of a unit, with an indication 
of the next unit in the chain, was defined as a genetic 
code script [J.H. Frazer 1974]. 

The configuration of units in the seed had a si-
gnificant impact on the final, form of the object. In con-
trast, differences in information about the type and 
orientation of the initial unit and the units adjacent to it 
in the data chain affected the generating system’s cho-

ice of procedures for filling the data chain with units. 
This is analogous to the difference between the transi-
tion rules in Cellular Automata and the initial (seed) con-
figuration. The first limited version of the program used 
only two seeds, the node (containing 42 units), and the 
second version the star (containing 72 units) [J.H. Fra-
zer 1974]. A generalized, component-based version of 
Reptile was later refined so that the program required 
two types of information:

•	 conceptual model of building information in its 
minimum coded configuration;

•	 description of the actual components and details 
of the output stage. 
The description of an object's initial (seed) con-

figuration was not necessarily going to be a building 
component, but more often a set of components in 
a key configuration, such as a corner or a change of 
direction. As in the first version of Reptile, all the in-
formation needed for new components in the data 
chain came from the type, location and orientation of 
the seed-forming component and those with it in the 
data chain at the point where the move or change of 
direction occurred. A new feature was that the program 
took dimensional coordination into account only when 
it was relevant to the concept. It did not rely on modular 
coordination or a grid, but calculated the distances be-
tween the location points of elements in the data chain 

Fig. 2a-b. Generative Reptile program, 1967-1968, (a) overgrowth forms developed from two different seeds, (b) overgrowth of an ob-
ject generated from a single seed unit (plotter printouts); source: J.H. Frazer, P. Janssen.
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to determine the modules appropriate for the design 
under consideration. In addition, the idea of "seeding 
an idea" to produce different types of buildings was 
extended to the concept of mutating "seed" details to 
generate variants that met the requirements of diffe-
rent types of environments, especially when it came to 
standard building structures. The individual mutations 
could be created interactively and stored as variants, 
which were referenced by an additional set of digits in 
the item description in the data chain. Thanks to these 
extensions, it was possible to develop large-scale bar 
structures and create new ones composed of multiple 
components [J.H. Frazer 1974].

Reptile elaborated - John H. Frazer (architect), 
Richard Prakins (programmer) and Francisco Guerra 
(research assistant) on The Cambridge University for 
Cambridge Atlas Titan computer working with plotter 
PDP7. Reptile being the first generative program aimed 
at architects constituted a new design model and me-
thodology, which was developed in the following years 
[J.H. Frazer 1979]. 

2. THE EVOLUTIONARY MODEL OF NATURE IN 
THE GENERATION OF ARCHITECTURAL FORM 
1980-1995

In the 1960s and 1970s, the evolutionary appro-
ach to design was more in the domain of engineering 
than architectural design. It allowed finding the optimal 
solution in response to computationally clearly defi-
ned selection criteria. Typically, evolutionary systems 
allowed for the initial definition of an already existing 
design, parameterizing those parts of the design that 
were thought to need improvement. In the second half 
of the 1980s, a Frazer-led research team at the Uni-
versity of Cambridge was already conducting fledgling 
experiments on improving hardware performance in 
terms of modeling and virtual representation, so that 
the computer would become the designer’s “genera-
tive toolbox.” In addition, there has already been rese-
arch on communication modeled on the synapses of 
neural networks [J.H. Frazer 1995]. It may be recalled 
that in the late 1970s the first processor giving sup-
port to graphics systems was made available, and the 
first microprocessor for computer graphics was made 
available in 1977. This led to the development of the 
first graphics program in 1978 General Purpose Pat-
tern Program (GPPP) along with its 3D version (GPPP3) 
[F.N. Krull 1994]. GPPP3 had functions that allowed 
the generation and transformation of geometric (rec-
tilinear) objects, random selection and combinatorial 
operations, and animation. Curve fitting and spline-in 
curve modeling functions were soon added. The same 

year saw the development of Shape Processor Lan-
guage (SPL), a graphical language with an extended 
data structure. Drawings generated by the Reptile sys-
tem containing more than 2,000 structural units and 
24,000 vectors could already be executed. However, 
the 8K Commodore Pet computer on sale at the time 
did not have adequate graphics drivers for plotters so 
that vector graphics could be plotted directly [J.H. Fra-
zer 1995].

Computer modeling, in all cases, depends on 
the structure of the data, while graphical representa-
tion depends on how the data is transfomed. It is the 
process of transformation that determines the potential 
of the computer system model. In addition, the compu-
ting power of the computer, the structure of data stora-
ge and processing, and hardware solutions are impor-
tant. It should be recalled that the data structures and 
interfaces of digital CAD systems were first designed to 
develop the geometry of the form, not the geometry of 
the relationships between components, which affected 
the integration of computational tools. 

In the early 1980s, the first concept of “plastic” 
modeling was developed in opposition to the rigid im-
plications of solid modeling. The idea was to extract 
higher-order information from the user about the re-
lationships between elements, not just geometric co-
ordinates. At the same time, links between computer 
graphics and means of production are also being de-
veloped.

Beginning in 1983, connections between gra-
phical programs and computer-controlled equipment 
such as lathes and milling machines were developed. 
In 1985, the first educational solid modeling program 
with an easy-to-use graphical interface was also deve-
loped. Released in 1987, the program allowed interac-
tive manipulation of three-dimensional forms and geo-
metric modifications using a three-dimensional cursor. 
The user interface was called a “virtual workshop” be-
cause the program allowed the development of files for 
fabrication [J.H. Frazer 1995].

2.1. Synthetic evolutionary model and Universal 
Constructor system

John Holland’s 1975 publication of a genetic al-
gorithm in a high-level programming language (the syn-
tax and keywords are intended to make the program 
code as easy as possible for humans to understand, 
such as Fortran) opened a new debate about imitating 
Nature through art, and especially about artificial life in 
architecture. 

In the late 1980s, a growing pro-environmental 
consciousness supported the quest for new forms for 
the built environment based on patterns drawn from 
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Nature’s creations. Research, in various fields, thus 
concentrated on biomimetic studies and experiments 
to find solutions that would make built forms as spa-
tially, energetically and materially efficient as biological 
forms. In Nature, the information about the form that 
evolves is encoded only genetically, while selection in-
volves the expression of this encoded information in 
the external form of the organism. Genetic codes pro-
duce instructions for the development of form, but the 
precise expression of these instructions is environmen-
tally dependent. The model of a form with artificial life 
also involves a code that produces instructions that are 
dependent on environmental influences, just as in the 
real world, only that it is a code-script that evolves.

A typical evolutionary design model requires fo-
cusing on two tasks such as:

•	 codification of the parametric model and evolving 
projects, i.e., development of rules of mapping, 
which specify how parameters should be assi-
gned to the parametric model and evaluation 
rules that determine how the model should be 
evaluated;

•  projects evolve in response to this environment, 
and the generative system produces alternative 
designs [J.H. Frazer and J. Frazer 1996]. 
The evolution model developed in this way (Fig. 

3) then required that the parametric architectural con-
cept be written as a “genetic code.” This code would be 
mutated and evolved by the generating system as a se-
ries of forms in response to the simulated environment. 
These forms would then be evaluated, and the code of 
selected models would be reused until a suitable form 
was selected for prototyping in the real world. Achie-
ving such an evolutionary model required defining: the 

genetic code (script), rules for developing that code, 
mapping the code onto a virtual parametric model, as 
well as defining the model development environment 
and selection criteria [J.H. Frazer and J. Frazer 1996]. 

A typical evolutionary generating system, on the 
other hand, ensured that mapping rules would create 
forms from a coded set of parameter values by inser-
ting those values into a parametric model. The evolu-
tionary system evolves these parameter values. This is 
defined as convergent (convergent) evolution by natural 
selection (J.H. Frazer and J. Frazer 1996).

Convergent evolution by natural selection is not 
the only possibility. In a book titled The Origin of Spe-
cies Darwin writes about the technique of artificial se-
lection used by breeders of racehorses or dogs [Ch. 
Darwin 2003]. In this model, artificial selection by the 
designer or user opens up the possibility of demon-
strating preferences. It can be useful as a way to deal 
with ill-defined selection criteria, particularly concerns 
about usage. It also provides an opportunity for the 
designer to use his or her experience and intuition to 
achieve faster results.

Nature also relies on divergence to keep a diver-
se gene pool active in order to cope with sudden chan-
ges, such as increasing predator success or changing 
environments. The model proposed by John Frazer’s 
research team also provided a divergent evolutionary 
process for generating alternative ideas. This provided 
a matrix of four possible combinations of natural/artifi-
cial selection and divergent/convergent evolution. 

Evolutionary models and methods (like Fraze-
r’s model) are often based on techniques such as the 
use of genetic algorithms developed by John Holland. 
Holland saw the genetic algorithm as a direct analogy 

Fig. 3a-b. Typical evolutionary model, (a) design model, (b) computer generating system – diagrams; source: J.H. Frazer, P. Janssen.
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with the evolutionary processes of nature. It may be 
recalled that his first book was aptly titled Adaptation 
in Natural and Artificial Systems [J. Holland 1975]. The 
process of natural selection can generate a wealth of 
alternative experiments, and the better ones survive. 
There is no single solution, no optimal solution, but 
there is continuous experimentation. Therefore, Hol-
land did not see the genetic algorithm as a convergent 
system.

In the early 1990s, John Frazer, began research 
on introducing genetic algorithms into generative de-
sign systems. Frazer was one of the first to attempt 
to extend the capabilities of CAD at the time to inclu-
de computational tools for generating form. For this 
purpose, Frazer’s team built the Universal Construc-
tor in 1990, an electronic device designed to perform 
complex geometric operations and visualize them. 
This computer had 500 integrated circuits with 400 
transistors each, and 6,400 diodes. The device was 
designed so that each circuit could operate as a whole 
on a common computer program. A separate appli-
cation was created for each user to access the pro-
gram and monitor screen. The user was encouraged 
to add environmental features to the set of problems 
being solved. The program allowed the inclusion of 
a variety of applications, resulting in the introduction of 
Cellular Automata computational models and making 
them responsible for graphically determining the loca-
tion of design activities. Curve fitting was controlled by 
a series of Fibonacci numbers, while the generation of 
curves with complex geometry was based on spline 
curves [J.H. Frazer 1995]. 

The structure of natural data gives ease of in-
put or change, and the amount of information affects 
the level of sophistication of modeling and simulation. 
Chromosomes in genetic algorithms are binary strings 
of fixed length (chromosomes can also be encoded 
with strings of integers or real numbers). This ease allo-
wed the development of the idea, treating architecture 
as a form of artificial life, subject, like the natural world, 
to the principles of morphogenesis, genetic coding, re-
plication and selection. 

In 1991, the Universal Constructor was en-
hanced with an application based on an evolutionary 
computational model. It contained 256 available cell 
states that evolved as a series of chaotic loops, mi-
micking the “strings” of chromosomes. Each step of 
evolutionary development was continually read out 
and raised to accepted rules defining the pattern that 
the evolutionary process would follow expanding the 
complexity of the forms produced (Fig. 4). The applica-
tion allowed the creation of sequential configurations 
of Euclidean solids (initiating) that evolved while the 
parameters were controlled by a graphical mapping 
program. It was also possible to intervene manually 
regarding making selections and stopping the process 
[J.H. Frazer 1995]. 

Imitating natural formative processes also requ-
ired taking into account the influence of environmental 
factors on genetic code development, selection and 
mutation. Between 1991 and 1992, several appro-
aches, such as data transmitters and simulation and 
environmental modelling techniques, were refined or 
developed from scratch. 

Fig. 4. Stefan Seemuller, Evolving sequences of geometric solids made with Universal Constructor software, 1991;  
source: J.H. Frazer 1995.
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During this period, analytical tools were deve-
loped for simulating the path of the sun for a specific 
latitude and determining the ‘light and shadow’ zones 
for a given development. These tools are now widely 
available in CAD packages. Based on the principles of 
the Cellular Automata self-replicating computer mo-
del (1979), simulations of turbulent flows that could be 
modelled were also developed. A system of classifiers 
was also developed, which received information from 
the environment and compared it with accepted clas-
sification rules to allow it to be fed into further opera-
tions. This linking of sensing and internal information 
processing to each other was thought to be analogo-
us to an organism that processes information from its 
environment, ‘thinks’ about it and acts accordingly. If 
this action is successful, the organism is rewarded, and 
the modelling of the information implemented by the 
classifier system was a reinforcement of this success 
[J.H. Frazer 1995]. 

Frazer’s research suggests treating Nature’s 
evolutionary model as a generative tool to help, not 
only in the creation of new forms, but also in the study 
of the morphology of architecture, as exemplified by 
the evolution of the Tuscan column made in 1993. 

Genetic algorithms were used to perform the 
evolution of the tuscan column, as part of an academic 
research programme, by means of which information 
on the proportions of the column was developed. Ba-
sed on the Jemes Gibbs template, which defines the 
rules for drawing ancient orders, it was specified what 

Fig. 5. John Frazer: evolution of the tuscan column by genetic algorithms, 1993; source:  J.H. Frazer 1995.

the relationships between its parts were. The structure 
and logic of the rules were programmed into the com-
puter, but a gene was substituted for each specified 
proportion. Populations were generated with random 
mutants (Fig. 5) [J.H. Frazer 1995]. 

The evolutionary design model presented was 
somewhat successful in its time, although it offered 
limited variability in the forms produced as only one 
‘seed’ was evolved (the parametric model of the initial 
configuration). As a result, the programmes offered lit-
tle scope for developing new ideas and forms. 

2.2.  Generative-evolutionary design model and 
the Interactivator system

The next step in the development of design 
tools that mimic biological formative processes was 
a design model and computer system that combined 
previous experience and followed advances in hardwa-
re and computer knowledge. The generative-evolutio-
nary approach to design was described by Richard 
Dawkins as early as 1986 when he presented the con-
cept of a generative-evolutionary system that enables 
the evolution of two-dimensional insect-like structures 
through artificial selection [R. Dawkins 1986]. Dawkins’ 

idea no longer required the embedded generative sys-
tem to contain the idea of concept seeding. Instead, 
he proposed that the generative rules be described in 
a genetic code. The code would then be modified and 
developed into a series of design models in respon-
se to a simulated environment, and the models would 
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be evaluated in that particular simulation environment 
and a code of successful models selected. The selec-
ted code would then be used to repeat the cycle until 
a specific stage in the development of the model selec-
ted for prototyping in the real world.

The generative-evolutionary design model iden-
tifies two tasks: 

•	 Codification of the generation concept, where 
rules and first principles of generation and evalu-
ation are established. Generation rules generate 
projects from coded code scripts, and evaluation 
rules evaluate the generated project;

•	 Evolving forms that develop in response to the 
design environment. This second task requires 
a generative-evolutionary system.

Fig. 6 a-b. Generative-evolutionary model (a) design model, (b) computer generation system, 1986, diagrams;  
source: J.H. Frazer, P. Janssen.

The generative-evolution model required by the 
generating system differs significantly from the previo-
us system, as the mapping step has been replaced by 
a generative step (Fig. 6). This generative step has been 
built into the generative system, for which a population 
of code scripts is first created.

The evolutionary process therefore consists of 
four stages: 

forms are generated from scripts of the genetic 1. 
code mediated by the form in question, its epi-
genetic development in the environment;
the resulting forms are evaluated through simu-2. 
lation and analysis of their performance in their 
environment, 
the most successful specimens are selected; 3. 

selected code scripts are transformed by gene-4. 
tic operators such as crossing and mutation. 
The above-mentioned four steps are then repe-

ated, and this process can, at any time, be interrupted 
by the designer. Generative rules were usually deve-
loped to be very general and not intended to reflect 
specific architectural concepts. However, all such ru-
les had to include preferences and constraints, resul-
ting in the forms created having certain characteristics  
[J.H. Frazer 1995]. 

An important aspect of this approach is that 
the generative system produces forms in response to 
the environment. This environment consists of a de-
sign context and design criteria. Generative rules may 
require information about the context and criteria. In 

this way, the development process that ‘develops’ the 
design becomes an adaptive process. This adaptive 
process identifies subsequent structural modifications 
in response to the environment and measures the per-
formance of different structures in the environment. 
The adaptive process creates a sequence of structures 
from a set of operators. Information extracted from the 
environment influences the choices made. This con-
trasts with systems that use a mapping process. Map-
ping processes perform simple, non-adaptive transfor-
mations that do not interact with the environment in  
any way. 

Significant evolutionary-generative experiments 
were conducted by Frazer’s team in the first half of the 
1990s. 
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By 1993, it was already possible to demonstra-
te what a genetic architecture language was. Work on 
‘living’ systems and artificial life led to the development 
of a set of scripts for the evolution of structure and form 
and a genetic architectural language for its encoding. 
A computer model was developed to the point where 
it was able to perform the form generation process in 
a simulated environment. Evolutionary space and time 
were compressed so that the model could evolve over 
a large number of iterative cycles. The theoretical fra-
mework was also developed so that it could be de-
monstrated interactively [J.H. Frazer, J.M. Silver 1994]. 

Such a display took place on 25 January 1995 
at an exhibition entitled ‘Evolutionary Architecture’, the 
work of Frazer, his wife and their students from the So-
ciety of Architects and the School of Design and Com-
munication at the University of Ulster. The demontrati-
ve model proposed a generative-evolutionary system 
that was accessible via the internet with the intention 
of encouraging widespread participation, and creating 
biodiversity in the pool of genetic forms on which the 
model depended. Janssen was involved in the deve-
lopment of a special demonstration version, known as 
The Interactivator. Although the theoretical system was 
simplified, all the key elements were presented. Par-
ticipation in the development of the model could be 
achieved by being on display or in virtual form on the 
Internet.

Indeed, Interactivator had a system that was 
based on the sequential evolution of a family of cellular 
structures in the environment. Each cellular structure 
began to evolve from a single cell inheriting genetic 
information from its ancestors. In the same way, each 
cell in a cellular structure contained the same chromo-
somes that make up the genetic code. Cells divided 

and reproduced based on the script of the genetic 
code and the environment, with each new cell conta-
ining the same genetic information [J.H. Frazer 1995]. 
The data structure used to represent cellular growth 
was based on a universal state space or isospatial 
data structure, in which each cell in the world has up 
to 12 equally spaced neighbours and can exist in one 
of 4096 states, the state of a cell being the determined 
number of spatial arrangements of its neighbours. The 
local environment of a cell (in the world) could therefo-
re be encoded in a 12-bit binary string. For example, 
a string type (110110000110) would spatially represent 
a cell with six neighbours in specific positions. Chro-
mosomes control the growth and development of the 
cell structure. A typical chromosome consisted of the 
following 5 parts:

•		 Chromosome origin: Internet address from which 
the chromosome originated;

•		 Condition: local cell environment (* unattended 
situation);

•		 Action: the state of the cell in the next gene- 
ration; 

•		 Flag: whether the chromosome is dominant or 
recessive; 

•		 Strength: Efficiency of the chromosome in rela-
tion to the environment.
The developmental process of each family mem-

ber consisted of three parts - genetic search landsca-
pe, cellular growth and materialisation and was based 
on a simple Goldberg classification system. The genetic 
algorithm was used to ensure that future generations of 
the system would learn from previous generations, and 
to ensure biodiversity during the evolutionary process. 
Each of the three developmental processes consisted 
of cyclic processes.

Fig. 7. Genetic search process – diagram; source: drawing by P. Janssen,  
J.H. Frazer et al. 2002.
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Fig. 8a-b. Interactivator, cellular growth process – diagram; source: drawing by J.H. Frazer,  
P. Janssen, b) cellular growth sequencies; source: J.H. Frazer, P. Janssen 1995.

G e n e t i c S e a r c h L a n d a c a p e: Se-
lection criteria are not defined, but are an emergent 
property of the evolutionary process and are based on 
the relationship between chromosomes, cellular struc-
ture and the environment over time. For each member, 
a genetic search landscape is generated that graphi-
cally displays the changing selection criteria. Form, 
or the logic of form, emerges as a result of traveling 
through this space of inquiry (Fig. 7a) [P. Janssen et 
al. 2002].

C e l l u r a r g r o w t h: Chromosomes are 
generated by sending them from a remote user, active 
site, or as a function of selection, crossover, and mu-
tation within cellular activity, and are maintained in the 
main chromosome pool. The physical environment de-
termines which part of the main chromosome pool will 
become dominant. Each cell’s local environment then 
determines which part of the genetic code is turned 
on. The cell then reproduces and divides according to 
this genetic code (Fig. 8a-b) [P. Janssen et al. 2002]. 

Fig. 9 a-b. Interactivator, materialization during cell division, a) materialization process; source: drawing by N. Paszkowska-Kaczmarek, 
based on Frazer, Janssen, b) materialization sequence; source: P. Janssen, J.H. Frazer et. al. 1995.
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Fig. 10. Interactivator, the sequence of formation of the biometric structure of the form and its materialization; source: J.H. Frazer 1995.
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M a t e r i a l i z a t i o n: unstable cells are 
generated during cell division. In the next generation, 
this remaining material creates an exclusion space in 
the cellular space. This space of exclusion interacts 
with the physical environment to create materialization. 
Boundary layers are identified in unstable cells as part 
of their state information, and an optimized surface is 
generated to cover the structure. This material already 
exists during the evolution of the model and initially in-
fluences the growth of cells of future generations (Fig. 
9a-b) [P. Janssen et al. 2002].

In this context, a seed in a computer model 
transfers its genetic codes to other seeds through cell 
division and then disperses across all models (Fig. 11). 
According to the fitness value that is calculated for the 
computer medium, the success genes in genetic al-
gorithms are selected as they occur in Nature. Then, 
these genes are subjected to crossover and mutation 
operations, and various architectural forms are created 
in the process of model operation. 

The presented evolutionary model was organi-
zed taking into account a hierarchical approach to the 
model itself and the data structure, which is recursive-
ly self-similar. The simulated environment in which the 
assessment took place was modeled under exactly 
the same conditions as the evolving structures. Not 
only did the environment and structure evolve in the 
same data space, but they could evolve together. Mo-
reover, competing structures could also evolve in the 
same space. The environment, in this case, involved 
user response and was modeled using virtual commu-
nities. It had a significant impact on the development 
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Fig. 11a-b. Interactivator: sequences of form formation by cell division; source: J.H. Frazer 1995.

of concepts using the language of genetic design. 
Genetic algorithms were used to perform selection, 
and normal interbreeding and mutations were used to 
propagate the population. The model consisted of an 
infinite number of data points that together constitute 
the data space. Each point in the data space was in-
telligent in the sense that it knew where it was and why 
it was there, and had a clear awareness of the spatial 
relationships of its neighbors. The laws of symmetry 
and symmetry breaking were used to control the de-
velopment of the model from the genetic code file. The 

flow of information through the model took the form of 
logical fields. The externalization of this data structure 
was a process driven by modeling the form generation 
process rather than the forms themselves [J.H. Frazer 
et al. 2002]. 

The selection criteria were not programmed into 
the model, but were an emergent feature of the evolu-
tion of the form model itself. For each element, a gene-
tic search landscape was generated graphically depic-
ting selection criteria changing over time based on the 
relationship between chromosomes, cellular structure 
and environment. The form, or the logic of form, was 
created as a result of traveling through this space of 
exploration [J.H. Frazer et al. 2002). 

The Interactivator was an evolving environment 
that was intended to respond both to the interactions 
of exhibition visitors and to the atmosphere in the exhi-
bition space (Fig. 12). Visitors were drawn into inte-
raction by proposing genetic information that would 
influence the evolution of the model. Sensors in the 
exhibition space also influenced the evolution of the 
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model, providing data on temperature, humidity, noise, 
smoke, and so on.

Collaboration via the Internet took place in three 
ways: 

•		 the Internet was used to allow virtual visitors 
to enter genetic information into the model, as 
physically present at the exhibition;

•	 the model program allowed for remote data 
downloading, but in such a way that it could 
work on its own to replicate, and each replication 
followed a different evolutionary path, the results 
of which could also be fed back to the central 
model to contribute to the gene pool;

•		 online access to the exhibition and book via 
conventional means has been enabled through 
a website so that you can understand the con-
text and observe the development stages of the 
evolving understanding model [J.H. Frazer et al. 
2002].
Interactive experiences gained at the Ulster 

show were used to refine a generative computer model 
that could, with the participation of residents, determi-
ne the desired or expected development of the built 
environment. The evolutionary model was intended to 
explain the transition from the past to the present and 
predict trajectories of future possibilities, as a tool for 
examining and assessing existing and future urban and 
social phenomena.

2. 3. Interactivator: combined version 
Combining the concept seeding model with the 

generative-evolutionary model resulted in a new type of 
model that integrates the advantages of both previous 

design models. This approach was first proposed by 
Frazer in 1990 [J.H. Frazer 1990] and later developed 
in the book An Evolutionary Architecture [J.H. Frazer 
1995].

The concept seeding model enables the gene-
ration of design forms that incorporate specific archi-
tectural concepts. However, the model does not use 
an evolutionary system, and as a result, the designer 
must discover generative modifications that will achie-
ve the most appropriate design. However, the genera-
tive-evolutionary model enables, in a complex way, the 
evolution of forms adapted to their environment.

However, these forms do not contain any ar-
chitectural concepts and are therefore highly abstract. 
Janssen’s combined model synthesizes previous mo-
dels, thus enabling the evolution of designs that, in ad-
dition to adapting to their environment, also incorporate 
specific architectural concepts.

This combined design model generatively de-
veloped modifications that, in the case of the concept 
seeding model, the designer had to introduce manual-
ly. These modifications made minor changes either to 
the seed concepts or to the principles that transformed 
them. The representation of these modifications was 
a code-script, which allowed the evolutionary system 
to also evolve the modifications. Generative modifica-
tions encoded in the code-scripts were used to gene-
rate designs, which were then evaluated and, based 
on these evaluations, new populations of modifications 
were created. This approach required rigorous defini-
tion of the scope of important generative modifications. 
This rigorous definition was required to enable the de-
velopment of rules that could autonomously create 

Fig. 12. Interactivator: action diagram; source: P. Janssen, J.H. Frazer et. al. 1995.
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new methods for generating modifications [J.H. Frazer 
and J. Frazer 1996].

The combined design model defines three  
tasks as: 

• odification of generative concepts, i.e. first, as in 
the previous model, generation and evaluation 
rules are defined. However, in this case, the ge-
neration rules they must produce designs from 
seed, not from scripted code;

•		 codification of architectural concepts, i.e. defi-
ning the germ of the concept that codifies a set 
of architectural concepts;

•		 evolving designs, i.e. design alternatives evolve in 
response to the environment design, which requ-
ires a generative-evolutionary system that inclu-
des seeding. 

Fig. 13a-b. Combined generative-evolutionary model, a) design model, b) computer model generating system;  
source: P. Janssen, J.H. Frazer et al. 1995.

The generating system here is similar to the ge-
nerative-evolutionary system described earlier. Howe-
ver, in this case the embedded generative system pro-
duces design forms based on concept seeds. The ge-
nerated designs are therefore the embodiment of a set 
of architectural concepts codified by the seed. Coding 
scripts encode generative modifications. These modi-
fications cause small changes either in the seed of the 
concept itself or in the generating rules that transform 
it. Generative modifications result in the production and 
evaluation of different designs. Generative modifica-
tions that result in designs with the highest efficiency 
scores are then selected. Genetic operators are then 
used to create a new population generating modifica-
tions that will be used to generate a new population of 
designs, and so on.

In the area of the generative-evolutionary design 
system, the idea of seeding concepts was a significant 
departure from the adopted research direction. Most 
researchers developing divergent evolutionary systems 
viewed all constraints and inclinations as negative ef-
fects that should be minimized (though never comple-
tely eliminated). Admittedly, the concept seeding ap-
proach reinforces constraints and inclinations, but at 
the same time ensures that the generated forms reflect 
the design ideas. Therefore, limitations and prejudices 
are perceived as positive rather than negative pheno-
mena.

2.4. Janssen’s generative-evolutionary model
Patrick Janssen developed and refined Frazer’s 

combined evolutionary-generative model, developing 

a wide range of generation systems using concept 
seeding. He also introduced significant modifications, 
especially when it comes to codifying the design con-
cept and the overall structure of the model.

•		 The idea of codifying the initial architectural con-
cept has been refined. The architectural concept 
must contain sufficient flexibility and adaptability 
to enable the creation of various designs. The ar-
chitectural concept should therefore not predefine 
the overall organization and configuration of the 
designs, but should instead focus on defining the 
design parts and their interactions and overlaps. 
These interactions and overlays can be thought of 
as defining the nature of designs without specify-
ing their overall form. Therefore, Janssen referred 
to a set of architectural concepts as a pattern of 
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form. However, the purpose of developing an ar-
chitectural form is the ability to use its concepts 
to create various forms. Janssen defined “diver-
sity by the distinction made in evolutionary biol-
ogy between diversity and disparity [S.J. Gould 
1989]. He referred to diversity as designs that dif-
fer in proportions and part dimensions, but have 
the same general organization and configuration 
of parts. The discrepancy concerned those proj-
ects that had a fundamentally different organiza-
tion and configuration of their parts. 

•		 The second area in which the combined Frazer 
model has been modified is its general structure. 
Two tasks from Frazer's combined model have 
been changed, i.e. concept codification and evo-
lving form have been introduced between the 
two new tasks. At the beginning, Janssen placed 
a task that focuses on the development of a form 
diagram; at the end, he added a task that focuses 
on developing a detailed project proposal. These 
four tasks were grouped in pairs to create two 
phases: the blueprint development phase and 
the design development phase (Fig. 13). This di-
vision reflects two different levels of environment. 

On the one hand, the schema creation phase will 
produce a schema that is specific to a general 
category of environment, called a niche schema 
environment. On the other hand, the design de-
velopment phase creates a design that is specific 
to one particular environment, called the design 
environment. In both cases, the environment inc-
ludes both the criteria that the project must meet 
and the context in which the project will exist [P. 
Janssen et al. 2003].

The codification of the mold scheme also differs 
from the Frazer model. In Frazer’s model, architectu-
ral concepts are codified into a concept seed, but it is 
unclear to what extent this architectural concept influ-
ences the coding of other rules, such as development 
and mapping rules. In Janssen’s model, codification of 
the character schema affects all evolutionary rules and 
data structures, including development and mapping 
rules. The set of evolutionary rules and data structures 
is collectively called an evolution schema. This evolutio-
nary pattern infuses the generative-evolutionary design 
system with inclinations and constraints that reflect the 
ideas developed by the design team.

Fig. 14. Two-phase generative-evolutionary design model  
– diagram 1996; source: P. Janssen, J.H. Frazer et. al.
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Dividing the design procedure into two phases 
made it possible for these phases to be implemented 
in different ways:

•		 The first phase develops and codifies the natu-
re of the project. The architectural form will then 
reflect the beliefs and preferences of the design 
team (called the designer’s position) and will be 
developed in response to the niche environment. 
This niche environment can be defined before 
finding a specific development environment. As 
a result, this phase creates a general design unit 
(evolution diagram) that can be reused across dif-
ferent projects; 

•		 The second phase is the process of evolution and 
details the form proposals for a specific design 
task. The selected proposal will be tailored to the 
project environment and assigned tasks that will 
cover aspects such as site, space requirements, 
performance goals and budget. Hence, at this 
stage, a design element is created that cannot 
be reused.

The operation of the generating system in the 
generative-evolutionary model proposed by Janssen 
(Fig. 15) is based primarily on population data. Each 
evolutionary step takes specific data from the popula-
tion, applies the rules specified in the evolution sche-
ma, and then transmits the newly created data. The 
computer hardware should be built to be able to iden-
tify a set of components of the generating system (so-
ftware) and propose a network configuration for these 
components. These components were to use a num-
ber of technologies and software systems that existed 
at that time, such as a computer program acting as 
a client for services provided by the server. 

The hardware configuration proposed by Jans-
sen (Fig. 16) is divided in its architecture into a program 
operated by the server and a set of programs for the 
client. The server program stores a population of pro-
jects in a database as well as a set of client programs 
that communicate with the server. The file for each evo-
lution step is executed separately by the client. Subse-
quent clients take over the seed client, which allowed 
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Ryc. 15. A generating system in the generative-evolutionary design model - diagram 1996; source: P. Janssen, J.H. Frazer et al.
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the population to be initialized, and the visualization 
client, which allows users to view a specific design in 
the population [P. Janssen et al. 2004].

This asynchronous evolutionary process means 
that any given client can be replicated many times. For 
example, a prediction client that runs a specific simula-
tion program can be duplicated, thus allowing designs 
to be simulated in parallel. Additionally, clients can run 
on different operating systems, thus facilitating the in-
tegration of third-party CAAD simulation and analysis 
programs.

Generative and evolutionary design involves 
using the virtual space of a computer in a way analo-
gous to the evolutionary processes occurring in na-
ture. Although the techniques described could be 
achieved with relatively simple design problems, the 
architectural problems still required computing power 
that exceeded the hardware standards available at the 
time. The evolutionary model of nature proposed in 
the 1990s as a process of creating an architectural 
form was supposed to foster the achievement of sym-
biotic behaviors and metabolic balance characteristic 
of the natural environment by the built environment. 
Architecture came to be treated as a form of artificial 
life, subject, like the natural world, to the principles 
of morphogenesis, genetic coding, replication, and  
selection. 

In 1971, chemist Tibor Ganti provided an impor-
tant elaboration of the criteria of life in his seminal work 
Principles of Life, in which he distinguished between 
the criteria of actual life and the criteria of potential life. 
It is about the criteria that an organism must meet in 

order to be considered able to live and the criteria that 
are necessary for an organism to survive life on Earth 
[T. Ganti 1971]. The real criteria of life are: i) inherent uni-
ty - the system must be a coherent unit; ii) metabolism 
– a living system must have the ability to metabolize; 
iii) inherent stability – a living system must be inheren-
tly stable; iv) subsystem carries information - a living 
system must have a subsystem that carries informa-
tion that is useful to the entire system; v) control pro-
gram - processes in living systems must be regulated 
and controlled. The criteria for potential life are: growth 
and reproduction, ability to inherit changes and evolu-
tion, mortality. Research on synthetic life covers similar 
criteria, including (individual properties) metabolism, 
inheritance, and evolution [B. Holmes 2006]. Synthe-
tic life must meet these criteria. They are derived from 
the intense self-organization capacity demonstrated by 
the articulation of biological materials at all size scales 
studied. These criteria are analyzed and applications 
discussed in terms of architectural application. At the 
end of the 1990s, there were even attempts to make 
a computer program “inhabit” the built environment, 
enter its structure, read it, understand its development 
principles and history, be able to capture its topogra-
phy, latitude and climate, and model its society and 
economy. And then the computer program would start 
asking for suggestions and proposing possible func-
tions and spatial solutions based on hardware stan-
dards [J.H. Frazer 1997].

The design techniques presented here implied 
significant changes in the architect’s working methods. 
First of all, they force us to rigorously define how an 

Fig. 16. Hardware configuration for the generative-evolutionary design model, 1998; source: P. Janssen, J.H. Frazer et al.
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architectural concept is expressed in the genetic code. 
Moreover, the architect must clearly define the crite-
ria for assessing the idea and be prepared to accept 
Janssen’s concept of client and user participation in 
the design process.

The use of generative-evolutionary tools in ar-
chitectural design also increases the role of the archi-
tect in the design process, as it becomes possible to 
„sow” many more generations of new forms than could 
be individually supervised, and to achieve a higher level 
of sophistication and complexity far beyond the econo-
mics of normal office practice.

3. TOWARDS THE INTEGRATION OF METHODS 
AND TOOLS 

Imitating the works of Nature also means striving 
for an artificial object to achieve properties that make 
it equally efficient and effective in its environment. In 
the context of natural morphogenesis, the formation 
process extracts chemical properties and physical 
material organizations. In the world of Nature, this is 
the result of the influence of environmental factors that 
influence morphogenetic movements externally and in-
ternally. Similar to natural morphogenesis, the process 
of physically finding form emphasizes the appreciation 
of material systems from the perspective of a bottom
-up design approach. However, morphogenesis in IT 
spaces separates the process of materialization from 
the process of form creation; in this way, material sys-
tems are imposed on the generated forms. Rationaliza-
tion and optimization methods are only an attempt to 
reconcile the materialization process with the formation 
process [A. Menges 2008]. 

Due to natural morphogenesis, it is expected 
that computational procedures will use the digital ma-
terialization method, in which materialization is enco-
ded as an active controller within the digital formation. 
Otherwise, distinguishing form generation from ma-
terialization requires another phase to impose a digi-
tal form derivative on the materialization processes. 
Therefore, formation should treat materialization as an 
embedded process that consists of both material and 
production domains within the produced morphogene-
tic development.

For over a decade, research on computational 
morphogenetic processes has promoted design de-
velopment by combining generative design techniqu-
es, manufacturing technologies, and analytical design 
strategies [K. Januszkiewicz 2016]. The introduction 
of these components means extending the linear de-
sign framework to include elements of linear design  
processes. 

3.1. Genr8: Evolutionary Algorithms and Growth 
Algorithm in the System CAD/CAM 

Morphogenetic and generative modeling tools 
were not yet available in the 1990s a compact packa-
ge that would allow these tools to be used in a CAD/
CAM system. One of the goals of the Genr8 project 
was to demonstrate that the combination of a growth 
algorithm and an evolutionary algorithm is useful for 
form exploration in the architectural design process. By 
implementing these algorithms in C++, a programming 
tool was developed that can be (and is) also used in 
educational practice.

In 1997, the interdisciplinary research team 
Emergent Design Group was established at MIT, which 
included computer scientists and architects. The idea 
was to explore the possibilities of synergy between 
architecture, artificial intelligence, artificial life, engine-
ering and materials science in order to develop a pro-
totype of a program providing new modeling tools in 
the CAD system. In 2001, Una-May O’Reilly and Mar-
tin Hemberg introduced the Genr8 program. This was 
supposed to be proof that the concept of generating 
surfaces by combining L-Systems and evolutionary 
algorithms is useful in modeling architectural formsj  
[U. Q’Reilly et al 2004].

It was intended that Genr8 would be treated as 
a sketching tool that should be used early in the design 
process. It was envisaged that this program would be 
useful in conceptualizing form, which would then be 
subjected to detailed definition and analysis in terms of 
structure or material. The lack of structural and mate-
rial analyzes in Genr8 was expected to limit its specific 
value [M. Hemberg et al. 2007]. However, the Genr8 
environment can be configured to somewhat reflect 
physical reality - adopting criteria and parameters that 
are geometric in nature. This forces the designer to in-
terpret structural or material constraints (e.g. by intro-
ducing certain angles or distances between support 
points).

Genr8 consists of two main components: the 
HEMLS (Hemberg-Extended-Map¬ L-System) growth 
engine and the Evolutionary Algorithm (AE) (Fig. 17). 
The growth engine uses the HEMLS interpreter to 
analyze how you prescribe. It geometrically interprets 
the axiom and the set of rules for rewriting the analy-
zed system. The set of rewriting rules is a context-free 
grammar. The growth process encoded in the HEMLS 
engine is computationally linked to the simulated phy-
sical environment. This allows the architect to influence 
this abstract environment and the depicted elements 
that should interact with the growth process. It should 
be noted that AE as a tool can only be (and was) used 
with the growth algorithm.
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The growth algorithm, as the central element of 
Genr8, is used here to generate surfaces. This algori-
thm is based on L-Systems, which are used to model 
plant growth [P. Prusinkiewicz, A. Lindenmayer 1991]. 
The L-System is a grammar consisting of a seed and 
a set of production rules, and a rewriting process in 
which the production rules are repeatedly applied to 
the seed and its subsequent states. In simple terms, 
L-Systems can be considered as systems for rewriting 
sequences of symbols. Combined with the graphical 
interpretation of generated strings, they are a way of 

generating graphics. The most popular method of gra-
phically representing L-systems is turtle graphics, in 
which symbols are interpreted as instructions for an 
imaginary turtle moving along patterns of lines in 3D 
space. The L-System should be understood here as 
a set of instructions on how to create a specific form, 
rather than a detailed plan detailing each building plan. 
The advantage of L-System is that at each stage of 
growth, the entire surface will be modified simultane-
ously, and not by sequential addition of components, 
and the form will acquire an organic appearance.

Fig. 17. Una-May O’Reilly i Martin Hemberg, Genr8 system model – diagram, 2001; source: U. Q’Reilly et al. 2004. 
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Fig. 19. Map L-Systems in biology and Gren8  
- formation of squares derivedby the HEMLS rewriting system  

source: M. Hemberg et al. 2007

Fig. 18. Map L-Systems in biology and Gren8 -  a model of cellular develop-
ment – planar graphs, source: M. Hemberg et al. 2007
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Map L-Systems were originally invented as 
a model for cellular development. This is a method of 
rewriting planar graphs using cycles (Fig. 18). With ap-
propriate graphical interpretation, these graphs can be 
used in a biological context to represent cellular struc-
tures. While L-System generates arboreal structure, 
Map L-system generates graphs that can be interpre-
ted as surfaces. The original L-system map model is 
designed for 2D only and to make it work in 3D, several 
additions have been made to this model. This is how 
the Hemberg Extended Map L-System was created 
(HEMLS).

In Genr8, each growth step has three phases 
(Fig. 19). They are illustrated starting from the seed 
(top left). In the first phase, the area size is increased 
by a simple scaling factor. Each vertex is moved away 
from the geometric center of the surface, as indica-
ted by the arrows. In the second phase, the rewriting 
rules are applied to each edge of the surface. Here 
the edges of ‘A’ are split and the new vertices are 
marked with circles. In the final phase, the branches 
are drawn and connected. The same procedure is ap-
plied to the ‘B’ edge in the center panel down. The 
marking of each edge is only shown in the upper left 
corner and the lower right corner, which shows the 
surface with new markings after one iteration of the 
rewrite rules.

A limitation of the basic L-System model is that 
it can only create arboreal topologies. To generate 
surfaces, the Map L-systems Lindenmayer algorithm  
[P. Prusinkiewicz, A. Lindenmayer 1991] should  
be used.

In Genr8, the Map L-systems algorithm was 
further extended to create 3D surfaces and named 
Hemberg Extended Map L-systems (HEMLS). These 
surfaces grow in a reactive environment simulating 
the physical environment [M. Hemberg et al. 2007]. 
An example of a surface growing in an empty HEMLS 
environment is shown in Fig. 18-19. HEMLS requires 
a seed specification (or initial flat surface), a set of pro-
duction rules, and two additional parameters, forming 
a prescribing system. The rewriting system shown in 
Fig. 19 is built into Genr8. 

The Genr8 modeling environment has a signi-
ficant impact on the result of the surface growth pro-
cess. There are two types of elements in this environ-
ment: forces and boundaries. The forces may be point 
attractors or repellents that act like magnets, causing 
the surface to grow towards or away from their loca-
tion (Fig. 20b). There is also a gravitational force that 
uniformly directs growth along one of the principal co-
ordinate axes (Fig. 20a). Boundaries can be placed as 
obstacles or used as bounding boxes to cordon off 
a surface.
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Fig. 20a-b. Square surface modeling environments a) modeling in a simulated gravity field, b) modeling in the force field of repellents; 
source: M. Hemberg et al. 2007. 
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A complex task would be to create a prescrip-
tion system that would allow manual management of 
the growth process of a given surface. This is mainly 
due to the difficulty of imagining what a given rewriting 
system will look like after repeated iterations. Environ-
mental influences only exacerbate this problem. Fur-
thermore, additional complications would arise from 
the difficulty of ensuring that the rewriting system is 
syntactically correct. With this in mind, the Evolutiona-
ry Algorithm (AE) has been incorporated into Genr8. 
AE automatically generates selectively adaptive and 
syntactically correct rewriting rules. The designer exer-
cises high-level control over the process by defining 
the fitness function and environment [M. Hemberg et 
al. 2007]. 

Genr8 uses Evolutionary algorithms invented by 
O’Neill and Ryan in 1997 called Grammatical Evolution 
(GE) (Ryan, O’Neill 1998). EG is based on the Genetic 
Algorithm (GA), and its advantage is that it combines the 
features of Genetic Algorithms (GA) and Genetic Pro-
gramming (GP) [M. Mitchell 1996]. It applies to standard 
genetic operations on a vector of fixed length expressed 
as integers. These numbers are then used to generate 
a specification of Backus-Naur Form (BNF) language 
structures, which provides the basis for implementation 
(numerically controlled devices). This grammar is repre-
sented by a set of production rules. This requires ad-
ditional mapping that does not exist in traditional GAs. 
Grammatical Evolution provides genetic degeneracy. 
This means that there are multiple gene encodings that, 
once mapped, can be individually decoded. In the first 
step of this two-step genetic mapping process, BNF (in 
conjunction with Map L-System) Genr8 allows access 
to different HEMLS universes. The application of Gram-
matical Evolution (GE) routines in the Genr8 system al-
lows a linear genome, as in the Genetic Algorithm (GA), 
to be mapped to a tree structure, as in GP genetic pro-
gramming. This is achieved by mapping a set of inte-
gers to the desired language using a Backus grammar 
representation Naur Form (BNF). This technique can 
be applied to any language that can be represented 
by a context-free grammar. All language constraints are 
handled by BNF and GE, which ensures strict separa-
tion between the genome representation and the target 
language. An important part of Evolutionary Algorithms 
(EA) is fitness assessment, which guides the search for 
better solutions. In design, there is no general way to 
algorithmically determine a “good” surface. Developing 
a useful framework for assessing suitability for design 
applications is still an open research question [S.S.Y. 
Wong, K.C.C. Chan 2009]. 

Genr8 uses a fitness assessment scheme that 
gives the designer control over the evolutionary search 

at a high level. This was implemented as a multi-pa-
rameter fitness function. Each parameter represents 
a specific surface feature. The designer can set target 
values for each parameter, as well as weights to deter-
mine the importance of each criterion. Important crite-
ria are: size (range in the x and y directions), symmetry, 
soft boundaries (wall interference is allowed but may 
be penalized as part of the fitness function), subdivi-
sions (a measure of surface quality), smoothness and 
waviness (local and global measures of variability in Z 
direction) [M. Hemberg et al. 2007]. 

The challenge for the designer is to understand 
the abstract parameters and the behavior and results 
of the evolutionary algorithm together with the growth 
algorithm, and then to combine these activities with 
the geometric and spatial arrangement of the designed 
form. The designer gradually learns to recognize how 
tools negotiate between various constraints and per-
formance criteria in the form development process. The 
key, then, is to understand how the available settings 
(including the environment) are related to this specific 
design goal. 

Integration with Maya is seamless. GENR8 is im-
plemented as a MEL (Maya Embedded scripting Lan-
guage) command and is used in the same way as any 
other function in Maya. 

However, MEL is based on a command line in-
terface, and for simplicity, a GUI has been implemen-
ted. This allows you to set all operating parameters. 
The GUI also prevents the user from entering incorrect 
combinations. HTML help files are also available. Bo-
undaries are set using regular Maya surfaces. You can 
draw arbitrarily convex surfaces and they will be tre-
ated as faces by GENR8. Attractors and repellents are 
placed using a special command. You can draw a cu-
rve and this curve will be used as the starting point for 
growth (it will replace the genotypically encoded axiom, 
which is always a regular polygon). Surfaces are drawn 
in separate layers. It is also possible to save both the 
grammar, the genome and the actual surface of Maja.

Genr8 is a collaborative creative tool, where the 
designer’s role is highly personalized and the design 
process follows a unique trajectory. Since 2003, Genr8 
has been used in student projects as part of the Emer-
gent Design and Technologies (EmTech) program at 
Architecture Associate in London. 

The goal of the Butterfly Machines project was 
to develop a chair (Fig. 21a-b). First, several sets of sur-
faces were generated using Hemberg Extended Map 
L-Systems (HEMLS) to intersect themselves. By gra-
dually changing the parameters and the environment, 
a whole set of self-intersecting shapes was obtained. 
Each set is a parametric variation of the system resul-
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Fig. 21a-b. Butterfly Machines project, a) modeling a self-intersecting surface in response on the assumed position of attractors and 
repellents in the force field, b) two selected variants; source: Steven Fuchs, 2005.
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ting from rewriting the square (Fig. 21a). Each set had 
a different location of attractors and repellents. Their 
arrangement was adopted to promote the chance of 
self-intersection of the surfaces during the growth pro-
cess. Each surface “grew” along the vertical axis (time 
axis). Two variants were chosen due to aesthetic con-
siderations in relation to the amount of self-intersecting 
surfaces and ergonomic considerations (Fig. 21b). Sur-
face ergonomics were assessed using a script in Digi-
tal Projects/Catia [U. Q’Reilly et al. 2004]. 

3.2. Genr8: 3D surface modeling and fabrication
Genr8 allows you to model and produce funda-

mentally different objects by using different methods 
of interpreting a given surface introduced as a “grain”. 
These can be both flat 2D and bi-curvaceous 3D surfa-
ces. The program is a collaborative creative tool where 
the designer’s role is highly personalized and the de-
sign process follows a unique trajectory.

Three different Genr8 surfaces with the same 
values but with different degrees of complexity in their 
articulation (Fig. 22). These surfaces are triangulated 
and unfolded to create a pattern that can be used for 
laser cutting and scoring. The first column shows the 
contours obtained from the Genr8 surface and the se-
cond the triangulation obtained with Maya. The third 
column shows the developed version, and the last one 
is photos of the completed surfaces U. [Q’Reilly i inni 
2004].

Genr8, having semi-automatic spatial sketching 
tools, can propose practical “design solutions” in 
a specific environment, as well as explore exploitation 
possibilities, which is inherent in the AE evolutionary 

algorithm. The results of the combined possibilities 
and limitations of the manufacturing and assembly 
processes included directly in the process of gene-
rating computational forms will be presented in an 
experiment with a variable curvature contoured sur-
face (Fig. 23). 

 The experiment begins by describing the geo-
metry of a surface with variable curvature as a sys-
tem of tangent and perpendicular construction planes 
(Fig. 23). These flat-sided elements will then be used 
as input to the manufacturing process, which involves 
computer-aided laser cutting of sheet material. Genr8 
was used to initiate the coevolution of two interlocking 
surfaces with increasingly complex geometric articu-
lation. Therefore, a number of geometric constraints 
were used to select the parameters of the efficiency 
function, thus ensuring that the elements were properly 
distributed planarly [M. Hemberg et al. 2007]. 

Evolutionary tools were used to initiate a pro-
cess in which two curved surfaces joined together ac-
cording to geometric performance criteria. The expe-
riment was based on geometric data obtained from 
several surfaces with different curvature. They are de-
scribed as a system of perpendiculars and tangents. 
The geometric constraints concerned only the local 
curvature and were applied to the entire surface. In an 
environment defined by attractive and repulsive forces, 
many generations have been grown from two connec-
ted surfaces. Geometric features, such as local chan-
ges in curvature and the adopted surface direction 
(Normal), redefined the position and number of planes, 
crossing multiple populations (Fig. 24a). The Normal 
surface is defined as a vector unit for the local surface 
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Fig. 22. 3D surface modeling and fabrication; source: C. Goncalves, 2004. 
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Fig. 23. A screenshot of the surface divided into production sections and the stages of the division and aggregation process;  
source: A. Menges, 2003.

and constitutes the first derivative of the position by 
indicating the actual dimensions for the designed sur-
face. The basic geometric relationships were relatively 
simple, but through nonlinear evolution the surface ar-
ticulation became more complex. The morphological 
process and common geometric performance criteria 

made it possible to maintain the logic of the material 
system so as to directly proceed to laser cutting of 
the necessary elements (Fig. 24b). The result of this 
experiment demonstrates a level of complexity and 
consistency that is difficult to achieve in conventional 
design approaches.
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Fig. 24a-b. A population grown from connected surfaces and  
a fragment of the surface composed of cut elements cut from sheet metalin CNC technology; source: A. Menges 2003.
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 The design of the pneumatic strawberry bar co-
ver was intended to exploit the evolutionary dynamics 
of reproduction, mutation, competition, and selection 
as design strategies (Fig. 24). The possibilities and limi-
tations of form creation were examined from the initial 
stage of its generation to the actual production pro-
cess. Performative patterns were sought that evolve as 
a species in populations and subsequent generations 
while maintaining structural load-bearing capacity and 
geometric features [M. Hemberg et al. 2007]. 

The starting point for the Genr8-based growth 
process was a relatively simple pneumatic compo-
nent, geometrically defined to cut out two trapezoidal 
surfaces that will be sewn together during fabrication. 
Once filled with air, each component acquires a thre-
e-dimensional form determined by the length of the 
surface in relation to the points defining it. These sim-
ple geometric relationships, defined as an overall 3D 
cutting pattern, formed the basis for the subsequent 
evolutionary process. Instead of developing only one 
surface, a scheme based on the coevolution of three 
subpopulations was used. A feedback loop was ini-
tiated in which the most recently evolved surface was 
used as a bounding box for the current surface. This 
method preserved the properties of the pneumatic 
element in the larger system, but removed distinctions 

between environmental constraints and individual re-
sponse. The next feedback loop used digital forming 
in dedicated membrane engineering software, and in 
addition, test results on physical models also influen-
ced the evolutionary process and its evaluation.Genr8 
generated over 600 generations in which 144 pattern 
species with appropriate geometric features were 
identified and cataloged. Since the structural behavior 
of the designed pneumatic system was based primari-
ly on specific geometric relationships, individuals were 
selected that shared these geometric features. The 
genotype of these individuals contained the genomes 
of the three geometry-defining surfaces, establishing 
a degree of phenotypic plasticity that allowed the re-
sulting pneumatic system to adapt to the limitations of 
digital pattern cutting and computer-aided manufactu-
ring processes [M. Hemberg et al. 2007]. 

The examples presented show how two coopera-
ting algorithms can be used, i.e. the Evolutionary Algori-
thm (AE) and the growth algorithm based on L-Systems. 
This also poses a significant challenge in understanding 
and applying the tools: how to best use Genr8 to achieve 
your goals. The designer’s task, therefore, is to come up 
with a way to express his design through criteria in a way 
that is applicable within Genr8. A designer using Genr8 
does not need to understand the algorithmic details of 
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Fig. 25. Covering the strawberry bar; source: A. Menges, 2003.
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the program, but must have a coherent and sufficiently 
accurate mental model of how the tools will behave.  
Genr 8 is the first program aimed at architects that 
combines geometry modeling with a computer-aided 
fabrication process. Integrating evolutionary and ge-
nerative computing methods and physical environment 
modeling techniques, this system is an essential tool for 
architects to creatively model surfaces and structures. 
For the first time in history, architects can model the 
shape of the form in correlation with the material and 
means of production at any scale. 

CONCLUSIONS 

The development of tools imitating form-forming 
morphogenetic processes presented here demonstra-
tes that their applications in architectural design require 
integration and ease of use in CAD. Indeed, the imple-
mentation of generative and evolutionary tools to create 
design assumptions enables architects and engineers 
to use computational morphogenesis in the creation of 
new architectural forms and structures.

Morphogenetic design thus appears as the use 
of algorithmic processes or rules and principles to ob-
tain design solutions. Rules for generative morphoge-
netic systems can be specified in various ways, e.g. 
by verbal grammars, diagrams, geometric transfor-
mations or command scenarios. Generative systems 
have varying degrees of control from automated to 
step-by-step manual. Using these methods requires 
the architect to approach the creative process diffe-
rently than before. This is a significant change, becau-
se before the IT revolution, the theory and practice of 
architecture focused primarily on form, whose shape 
or relationships of parts were supposed to imitate the 
creations of Nature. New aspects of the creation of 
form were studied in Poland by Adam M. Szymski. 
Drawing on his knowledge of the human sciences, 
he conducted comparative analyses of the creative 
process and the processes of systemic design, and 
demonstrated the topological nature of the geometry 
of their systemic relationships, impossible to depict at 
the then level of development of computer technology  
[A. Szymski 1997].

Nowadays, architects are turning to computer-
based morphogenetic tools and generative systems to 
study the influence of various factors on form. They 
borrow them from other disciplines and use them to 
design buildings and materials. The most widely used 
are: cellular automata, L-Systems, fractals, Voronoi 
diagrams, shape grammars and genetic algorithms. 
This is because the development of computational 
morphogenesis follows the behaviour of natural sys-

tems resulting from internal interactions between dif-
ferent layers of information. This method supports 
a computational framework for creating layers of infor-
mation for modelling morphogenesis. The complexity 
of this framework cannot be simplified to a top-down 
system due to emergent behaviours that result from 
interactions between low-level elements. Therefore, 
computational morphogenesis explores the links be-
tween the two levels of micro and macro interactions 
to ensure self-organisation in the internal components 
of the form.

The development and dissemination of morpho-
genetic design tools in CAD integration is a promising 
alternative for future climate-change and sustainability-
oriented architecture. 
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