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Abstract:
Analysis of electrocardiogram and heart rate provides 
useful information about health condition of a  patient. 
The North Sea Bicycle Race is an annual cycling competi-
tion in Norway. Examination of ECG recordings collected 
from participants of this race may allow defining and 
evaluating the relationship between physical endurance 
exercises and heart electrophysiology. Parameters reflect-
ing potentially alarming deviations are to be identified in 
this study. This paper presents results of a time-domain 
analysis of ECG data collected in 2014, implementing 
K-Means clustering. A  double stage analysis strategy, 
aimed at producing hierarchical clusters, is proposed. The 
first phase allows rough separation of data. Second stage 
is applied to reveal internal structure of the majority 
clusters. In both steps, discrepancies driving the separa-
tion could stem from three sources. Firstly, they could be 
signs of abnormalities in electrical activity of the heart. 
Secondly, they may allow discriminating between natural 
groups of participants – according to sex, age, physical 
fitness. Finally, some deviations could result from faults 
in data extraction, therefore serving in evaluation of the 
parameters. The clusters were defined predominantly by 
combinations of features: heartbeat signals correlation, 
P-wave shape, and RR intervals; none of the features 
alone was discriminative for all the clusters. 

Keywords: ECG, principal Component Analysis, silhouette 
analysis, clustering

1.	 Introduction
The North Sea Race (Nordsjørittet) is an interna-

tional cycling competition organized annually in Ro-
galand, western Norway, between cities: Egersund 
and Sandness. It is open to a wide spectrum of com-
petitors, from amateurs to professionals. In 2014, 
ECG data was collected from over a thousand partici-
pants, on three days: the day of the race (14.06.2014) 
as well as the day before and after the race. The data 
set was collected as part of the North Sea Race Endur-
ance Exercise Study (NEEDED). Continuation of this 
project with extended set of recorded data is planned 
for years 2017–2019. Additionally, long-term effects 
are to be studied for 20 years, until 2034.

Analysis of electrocardiogram (ECG) is a valua-
ble tool in monitoring and diagnosis of patients for 

various cardiac conditions. The procedure of auto-
matic ECG signal analysis can be performed in time 
domain or frequency domain and is usually divided 
into two steps: feature extraction and classifier desig-
nation [1]. There are various methods for feature 
extraction that are reported in the literature. The as-
pects of Principal Component Analysis (PCA) related 
to ECG signal processing are discussed in [2], appli-
cation of customized wavelet transform (WT) in ECG 
discriminant analysis is described in [3], while the use 
of Hilbert transform for feature extraction from ECG 
signal was examined in [4]. Comparison of support 
vector machine (SVM) algorithm and artificial neural 
network approach (ANN) for classification of arrhyth-
mias in ECG signal is presented in [5]. Deep learning 
method for active classification of electrocardiogram 
signals was applied in the research described in [6], 
while the clustering method for QRS complexes clas-
sification was applied in [7].

Measurement of ECG and heart rate (HR) during 
daily activity is a potential tool for early diagnosis of 
cardiac diseases and may also provide individualized 
guidance to exercise and physical training. The aim of 
this project is to identify ECG and HR parameters useful 
for differentiating normal and abnormal patterns dur-
ing prolonged, high intensity endurance exercise. In this 
part of the study, concerning data from 2014, the objec-
tive consisted of three elements. First of all, it aimed at 
creating ECG processing algorithms which would found 
a base for future analysis. Particular focus was put on 
time-domain approaches. Secondly, influence of a ma-
jor physical effort on electrical activity of the heart was 
studied. Finally, by means of data clustering algorithms, 
the project aimed at developing methods to detect pos-
sible individuals with ECG parameters significantly dif-
ferent than for most of the participants.

2.	 The Dataset and Software
The database consisted of 3158 ECG recordings, 

each of duration of 10 s, stored in .mat files. Since this 
project aimed at comparison of data obtained from all 
three collection time points, it was decided to reject 
participants for whom some of the recordings were 
missing. As a result, 996 complete sets of three re-
cordings were obtained.

The collection had to be further reduced owing to 
errors raised in a few cases on the stage of ECG seg-
mentation. After removing these, further analysis was 
conducted for 989 participants (2967 ECG record-
ings).
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Processing and analysis of the data was conducted 
using Python programming language, with particular 
use of packages: BioSPPy [8], SciPy [9], and scikit-
learn [10], [11].

3.	 Data Pre-processing and Feature 
Extraction

The dataset provided 8-channel ECG recordings, 
containing signals from leads I, II, and six precor-
dial leads (V1 to V6). In this project, however, only 
lead-I signal was analyzed. After the channel of inter-
est was extracted, it was subjected to pre-processing 
and measurements, described in detail in the follow-
ing sections of this paper. The procedure aimed at vis-
ualization of changes in the ECG signal over the three 
days and extraction of features relevant for compari-
son of data obtained from different participants.

3.1. Data Pre-processing
In the initial stage of processing, the lead-I ECG 

signal was subjected to filtering to suppress high-fre-
quency noise and remove baseline drift. This was 
done by application of a bandpass-type Finite Impulse 
Response (FIR) filter with cutoff frequencies of 3 and 
45 Hz. The filtered signal was used to detect locations 
of R-peaks, which was done by Engelse-Zeelenberg 
approach modified by Lourenco et al. [12]. As a proof-
reading, for singular cases in which this method failed 
to reliably identify the peaks (less than 3 of them 
found in a ten-seconds recording), the detection was 
repeated utilizing the method of Christov [13]. The 
identified R-peaks were used as reference during ex-
traction of heartbeat templates, defined in a time win-
dow of 0.3 s before and 0.4 s after the spike. For both 
procedures, algorithms implemented in the BioSPPy 
package [8] were used.

The pre-processing stage was finalized by averag-
ing of the heartbeat templates extracted from a single 
recording to improve signal-to-noise ratio [14]. Addi-
tionally, parameters referring to the heart rate (mean 
duration and standard deviation of R-to-R intervals) 
were derived.

3.2. Heartbeat Template Measurements
Some of the features used in the further processing 

stage were defined on the basis of characteristic inter-
vals and amplitudes of waveforms present in a stand-
ard lead-I ECG signal. In order to measure those, meth-
ods for searching key points (peaks of P, Q, R, S, and 
T waves, as well as onsets and endpoints of some of 
them) in the heartbeat templates were developed.

The location of R-peak in the heartbeat signal was 
fixed, resulting from the beat extraction procedure. 
P wave top was defined as a maximum before the 
occurrence of the R-peak, excluding 0.05 s directly 
preceding the latter. A similar, but mirror-reflected 
procedure was applied for determining the top of the 
T wave. The Q and S points were found as local mini-
ma within a fixed, short time window before and after 
the R-peak respectively. The S wave endpoint, needed 
mainly for the purpose of ST elevation measurements, 
was defined as a point where the positive slope after S 
falls below 90% of its value at S.

Search for onsets and endpoints of P and T waves 
was performed following the idea described by La-
guna et al. [15]. In a specific time window preceding 
or following the wave peak of interest (for an onset 
or an endpoint of the wave respectively), a point 
with a maximal slope is found. Moving further away 
from the peak, the algorithm searches for a point at 
which the slope attains a value of the slope specified 
by a threshold. The threshold is defined as a percent-
age (e.g. 2%) of the maximum slope value before or 
after the peak. In absence of such a point, a point with 
minimal slope within the time window (taken from 
the maximal slope point) is marked as the onset or 
endpoint. The values of thresholds and time window 
durations were adjusted empirically.

Exemplary results of the ECG key point search are 
presented in Fig. 1. Each subplot presents an averaged 
heartbeat template for the respective day of measure-
ments for the same participant. The found ECG points 
are marked as red dots.

Fig. 1. ECG key points detection – exemplary results

The points were used to measure intervals and am-
plitudes of ECG signals. For estimation of amplitudes, 
the level of Q was regarded as the baseline. ST eleva-
tion was defined as difference in amplitude between 
the endpoint of the S wave and the onset of the T wave.

3.3. Morphological Comparison of Heartbeat Templates
Another set of parameters was derived from com-

parison of morphology of the extracted heartbeats, ei-
ther a full set of beats from one signal or a set of three 
averaged beats from the three days (for a given par-
ticipant). To exclude correlation changes stemming 
from changing heart rate between the days (which 
influences durations i.a. of ST interval), processing 
in this part was conducted only on parts of the heart-
beats corresponding to QRS complexes, whose shape 
did not exhibit any heart-rate dependency.

A basic measure to compare the heartbeats is Pear-
son r coefficient, also referred to as Pearson prod-
uct-moment correlation coefficient. Its value was com-
puted for every pair of heartbeats within the analyzed 
set, creating a matrix of beat-to-beat correlation. To 
ensure that exclusively the shape of the beats is com-
pared, with no influence of residual baseline drift, the 
coefficient was calculated using first differences of the 
signals. From the correlation matrix, the mean value 
was used as a feature for the further analysis.
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Another aspect in beat contour analysis is the idea 
of morphological classification. It was developed at 
the University of Glasgow, as a part of their 12-lead 
ECG analysis algorithm [16], [17]. Following this ap-
proach, QRS complexes from the first day were itera-
tively compared taking into account their morphology 
(Pearson r coefficient). Similar peaks were grouped 
into a class; if similarity threshold was exceeded, 
a new class was created. Beats within each class were 
averaged to serve as templates for comparison with 
signals from the second and third day. Beats from 
these two days were assigned to this of the first-day 
classes to which they were the most similar. In case 
Pearson coefficient for a beat and each of the classes 
templates was falling below a specific threshold, the 
beat was considered an outlier. Percentage of such 
morphological outliers for the given participant was 
another feature derived in this field.

3.4. Features Definition
ECG features were derived from the measurements 

using the above described approaches. Ten features 
aimed at comparing the data obtained from the three 
days were defined as described below. Abbreviations 
of the feature names, provided in the parentheses, are 
used later in figures presented in the results section.
•	 Shape coefficient of P wave, defined as ratio of 

height of the wave to its width; the used features 
expressed change in this value from day 1 to day 2 
or 3 (P_shape_12 and P_shape_13 respectively).

•	 Difference in duration of QT interval on day two 
or three with respect to day 1 (QT_12 and QT_13 
respectively).

•	 Difference in duration of RR interval on day two 
or three with respect to day 1 (RR_12 and RR_13 
respectively).

•	 Change (difference) in mean correlation of 
heartbeat templates from the second or third 
recording with respect to correlation in the 
first day (correlation_12 and correlation_13 
respectively).

•	 Maximal ST elevation (max_ST_elev) – maximum 
from values measured on the three days. It was 
decided to choose the maximum coming from 
any of the days since the ST elevation itself, not 
necessarily its change from day to day, should be 
regarded as an alarming ECG feature. [18]

•	 Percentage of morphological outliers (morph_
outliers) – percentage of beats from days no. 2 and 
3 not matching to any beat class defined in day 1 
for the given participant (expressed with relation 
to total number of beats from the three days), as 
defined in the previous section.
Features based on differences between days are 

defined by subtracting value on day 2 or 3 from value 
on day 1. Therefore, positive values of these features 
indicate a decrease with respect to day 1 (shortening 
of intervals or decline in correlation).

4.	 Feature Set Analysis
Analysis of the derived set of features was per-

formed predominantly by unsupervised clustering. 
Since it was noticed that clustering on the entire da-

taset tends to yield one or more larger clusters, con-
taining majority of the points, and a few ‘far outliers’ 
– points significantly separated from the majority 
group, it was decided to develop a two-stage proce-
dure. After first-attempt analysis and clustering, the 
outliers clusters (containing less than 10% of the 
total number of observations) are removed and the 
analysis is repeated to reveal structure of the major-
ity clusters.

Each of the two stages consists of two main el-
ements: principal component analysis (PCA) and 
K-means clustering combined with silhouette analy-
sis, described in the following sections of this paper.

4.1. Principal Component Analysis
Principal Component Analysis is a statistical oper-

ation aimed at reduction of dimensionality of the clus-
tering data. It performs mapping of the observation 
matrix on a new orthogonal space, whose axes are 
referred to as principal components (PCs). The orien-
tation of the new space is chosen such that the first 
principal component is aligned with the direction of 
the highest possible variance in the data; the same ap-
plies then to each consecutive principal component, 
with the assumption, that the new PC is orthogonal 
to all the previously defined ones. Consequently, each 
PC explains smaller portion of the dataset variance, 
expressed as eigenvalue of each component. It is then 
possible to reduce the dimensionality by discarding 
the less meaningful principal components and retain-
ing only the first few, which in total stand for majority 
(e.g. 80%) of the data variance. [19] PCA is frequently 
applied prior to K-means clustering. It allows not only 
reducing computational effort by decreasing number 
of dimensions to be analyzed, but also suppressing 
the effect of possible correlation between the original 
features (which is referred to as whitening [20]). Fur-
thermore, by investigation of eigenvectors of the com-
ponents it is possible to evaluate contribution of each 
of the original features to the principal components, 
hence defining their statistical significance.

PCA was applied to the set of features on both 
main stages of the analysis after data normalization. 
Six principal components, explaining about 80% of 
the data variance, were retained. The number of the 
PCs was chosen such that a balance was reached be-
tween dimensionality reduction and the retained por-
tion of the variance. The data mapped on the PC space 
was passed to clustering and silhouette analysis.

4.2. Clustering with Silhouette Analysis
Since no prior assumptions on the structure of the 

data were made, and the K-means clustering requires 
specified number of clusters as an input, silhouette 
analysis was launched on the dataset to determine the 
best number of clusters. Silhouette analysis allows val-
idating consistency of computed clusters by comparing 
cohesion of each sample (describing how well it be-
longs to a cluster it was assigned to) and its separation 
from other clusters. The resulting silhouette score is 
expressed as a fraction between –1 and 1. A high score 
represents good sample classification, whereas nega-
tive values indicate that the sample might have been 
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assigned to an improper cluster. Average silhouette 
score of all the samples allows assessing general con-
sistency and validity of the clustering. [21]

In this project, silhouette analysis on the PC-trans-
formed data was performed for numbers of clusters 
(computed by K-means algorithm) ranging from 2 
to 7. Average silhouette scores were compared and 
the number of clusters corresponding to the highest 
score (the best cluster separation) was chosen for fur-
ther analysis.

K-means clustering with the chosen number of 
clusters was applied to the dataset mapped to the 
reduced principal components space. The result was 
presented and analyzed graphically both in the PC 
and the original feature space.

4.3. Feature Set Analysis Framework
In this section, methods of the feature set analysis 

are summarized and detailed sequence of operations 
on the dataset is presented.

(a) The 10-dimensional set of features is first sub-
jected to normalization. (b) PCA is performed to map 
the set to a reduced, 6-dimensional space. (c) Num-
ber of clusters is chosen by the silhouette analysis. (d) 
K-means clustering is applied to the PC-transformed da-
taset. (e) The results of clustering are presented in both 
feature spaces. Additionally, eigenvectors and eigenval-
ues are visualized to analyze statistical significance of 
the original features. (f) If any of the clusters contains 
less than 10% of all observations, the corresponding 
samples are removed from the original observations 
matrix (with all the 10 features retained). (g) Steps a-e 
are repeated for the corrected observations set.

5.	 Results and Discussion
Results of the first-stage clustering analysis are 

presented in Fig. 2 and Fig. 3, and for the second stage 
– in Fig. 4 and Fig. 5. 

Fig. 2. Result of clustering on the full dataset, in the principal component space; (a) projection on principal 
components 4 and 5; (b) projection on principal components 2 and 3

Fig. 6 depicts outcome of PCA. As it can be seen 
in the figures, 2D presentation of the results provides 
only a limited view and it is necessary to look at dif-
ferent combinations of the dimensions to observe 
separation between clusters.

The results of clustering in the PC space and orig-
inal feature space are presented using scatter plot of 
observations in two of the feature space dimensions 
(as shown in Fig. 2 to Fig. 5). It should be noted that 
the features have been normalized, therefore the exact 
displayed values should not be taken into account. The 
results of PCA are shown as bar plots of the eigenvec-
tors of the components (Fig. 6). Starting from the top, 
the subplots refer to consecutive principal components. 
Statistical significance of the latter, defined as portion of 
the dataset variance they explain, is added to the verti-
cal label of each subplot (marked as ExpVar). Heights of 
bars in the subplots correspond to contribution of the 
original, normalized features (whose names are listed 
at the bottom of the plots) to the principal components.

As shown in Fig. 2, the first stage of the analysis 
produced expected unbalanced results: the majority 
(more than 90%) of observations was assigned to 
a single cluster (labeled as 1), while the remaining 
two clusters are much smaller. As presented in Fig. 2a, 
cluster 2 is well separated from the other two with 
respect to the fourth and fifth principal component, 
which are defined predominantly by percentage of 
morphological outliers and ST elevation (Fig. 6a). In-
deed, this separation is explained predominantly by 
the first of them – as presented in Fig. 3a, cluster 2 
is composed of the observations with relatively high 
values for morphological outliers percentage, while 
for most observations the values are equal or close 
to 0. On the other hand, cluster 0 in this projection 
is overlapped partially with both clusters 1 and 2. 
However, it is clearly separated when observed from 
principal components 1 and 3, both of which exhibit 
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Fig. 3. Result of clustering on the full dataset, in the original feature space; (a) projection QT interval difference (days 
1 and 2) and percentage of morphological outliers; (b) projection on correlation difference-related features

Fig. 4. Result of clustering on the restricted dataset,  
in the principal component space; (a) projection on principal 
components 1 and 4; (b) projection on principal components 
2 and 3; (c) projection on principal components 5 and 6
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Fig. 5. Result of clustering on the restricted da taset, in the original feature space; (a) projection on RR interval 
difference (days 1 and 2) and maximal ST elevation; (b) projection on correlation difference between days 1 and 2 
and percentage of morphological outliers; (c) projection on the correlation difference-related features; (d) projection 
on differences in QT and RR intervals between days 1 and 3; (e) projection on the P-shape-related features

(a)
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high dependence on correlation-related features (see 
Fig. 3b). Furthermore, analysis of projection of the 
dataset onto these two features leads to interesting 
observations. Majority of the points are concentrat-
ed around the (0,0) point, indicating little change in 
intra-recording heartbeat templates correlation from 
the first to the second or the third day. In some cases, 
the correlation is reduced with respect to the first day. 
However, for some participants, the correlation was 
considerably increased by approximately the same 
portion on both the second and the third day. The lat-
ter group constitutes cluster 0. Hence, for participants 
in this cluster, correlation on the second and third day 
was on comparable level, relatively high compared to 
day 1. This is typically not accompanied by increased 
percentage of morphological outliers since this fea-
ture always uses day 1 as a reference.

Since the clusters 0 and 2 encompassed minor 
portion of the observations (1.2% and 4.8% respec-
tively), they were excluded from further analysis and 
the second stage of the procedure was conducted on 
the points originally assigned to cluster 1, which is 
presented in Fig. 4 and Fig. 5. Due to a high number 
of clusters (7), proper visualization of separation in 
just two dimensions is further obstructed. The three 
major clusters, labeled as 0, 1, and 4, can be discrimi-
nated by looking i.a. at principal components 1 and 4 
(Fig. 4a), which are dependent on maximal ST eleva-
tion and features related to QT and RR interval (Fig. 
5a). However, the separation cannot be clearly visu-
alized in just two dimensions. Possibly, this division 
is of lesser significance when compared to other clus-
ters distinguished in this set.

Clusters 2, 3, and 6, can be distinguished by pro-
jection onto principal components 2 and 3, defined 
predominantly by features associated with shape of 
the P wave, correlation, and morphological outliers 
percentage (Fig. 6b and Fig. 4b). Statistical signifi-
cance of the latter was slightly lower than in the first 
stage of the analysis (considering its contribution to 
the first two principal components); however, it is still 
one of main components differentiating cluster 2 from 
others (as shown in Fig. 5b). This is particularly inter-
esting when compared to correlation representation 
of the clustering result (Fig. 5c). Cluster 2 is consti-
tuted by points for which decreased correlation was 
indeed observed, but predominantly either on day 2 
or 3, rarely on both days. On the other hand, cluster 
6 exhibits improved correlation on both day 2 and 3. 
Similarly as in the first stage of the analysis, this does 
not necessarily entail an increase in the percentage of 
the morphological outliers.

On the other hand, closer look at the P shape al-
lows to discriminate cluster 3 (as shown in Fig. 5e). 
For participants belonging to this cluster, P wave was 
flattened (lower height-to-width ratio) in days 2 and 
3 with respect to day 1. The change in shape was more 
prominent than observed in the other groups.

Finally, cluster 5, which appears to overlap with 
other clusters in most of dimensions, is in fact distinct-
ly separated with respect to principal components 
5 and 6 (Fig. 4c). The fact that it was not reflected in 
any of the first, more important principal components 

could be attributed to relatively small size of this clus-
ter (about 0.5% of all observations), which diminishes 
its impact on the total variance of the dataset. Original 
features that contribute the most to this component 
include those related with QT and RR intervals. As pre-
sented in Fig. 5d, decrease in duration of QT interval is 
in general correlated with increase in RR interval. For 
cluster 5, however, this trend does not apply. Values for 
RR interval overlap with other clusters, but QT inter-
val on day 3 is shortened to a much higher extent. This 
effect is not present on day 2. Further detailed investi-
gation of these cases is needed to determine whether 
the phenomenon is a question of improper key point 
localization or a sign of potential cardiac issue.

Although the identified clusters are usually not 
distinctly separated from one another, they are de-
fined by common trends in relation to combinations 
of certain features. Summary of the clustering proce-
dure and results is presented in Fig. 7 in the Appendix.

6.	 Conclusions
The NEEDED study focuses on characterization 

patterns associated with a prolonged endurance ex-
ercise. One of its major goals is identification of pa-
rameters related to ECG and heart rate which could 
be used to distinguish between regular and deviated 
performance of the heart. In this part of the research, 
several potentially discriminative features were rec-
ognized. Further investigation and validation with ad-
ditional data is needed to verify which of them could 
serve as criterions in detection of electrocardiophysi-
ological abnormalities.

In the first stage of the analysis, the crucial fea-
tures were associated predominantly with correlation 
between the beats. The impact of the correlation-re-
lated features was slightly diminished, but still con-
siderable during the second stage of the clustering. 
The other particularly meaningful features included: 
P shape, RR interval and QT interval, the latter two 
exhibiting some correlation. Interestingly, the heart 
rate (described by RR interval) was not always in-
creased after the race; frequently, the direction of the 
change was the same on day 2 and 3 with respect to 
day 1. More valuable information could be extracted 
by comparison of these trends with additional data, 
including participant details (sex, age, level of physi-
cal activity) as well as data on time interval between 
finishing the race and collecting the recording of the 
individual participant.

It should be noted that there was no universal 
feature or principal component which would pro-
vide separation between all the clusters globally. On 
the other hand, each cluster could be described by 
a combination of two to four features that made it 
distinguishable from the other clusters. Determina-
tion of features defining the individual clusters was 
facilitated by analysis of eigenvectors of the principal 
components. However, PCA is only based on variance 
prominent in one of the first principal components, 
what makes it only a candidate for a cluster-deter-
mining property. On the other hand, features truly 
significant for separation are always marked in the 
principal components’ eigenvectors.
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Fig. 6. Principal component analysis results: 
eigenvectors and explained variance portions of the 
six components; results of the first (a) and second (b) 
stage of the analysis

The presented method produces hierarchical 
structure of clusters from the dataset. This allows 
two-level investigation of the data structure and sep-
arate investigation of huge discrepancies and more 
subtle trends in the dataset. Furthermore, the hier-
archy scheme is also followed in analysis of features 
having particular impact on the dataset partitioning. 
Combined with additional data, it could be used in 
differentiation between natural, physiological groups 
among the population and early detection of certain 
cardiac abnormalities.

It should be noted that the produced model of 
the analyzed dataset well suits the expected struc-
ture of the test population. Participants with devi-
ating ECG parameters constitute a minority. Most of 
observations fall into the normal ranges or exhibit 
only slight alterations of different types, reflecting 
physiological phenomena with ontogenetic variabil-
ity.

Future works include a fusion of time-domain and 
frequency-domain analysis of the collected ECG data. 
Furthermore, the dataset will be supplemented with 
additional information, including i.a. patients’ age, 
gender, the race completion time, and indication of 
cardiovascular system condition. This will allow to 
verify the results concerning significance of the ECG 
features derived and investigated in this paper. What 
is more, the supplementary data will enable introduc-
ing supervised learning methods to the analysis. The 
algorithm will be trained to eventually gain the ability 
of differentiating between natural groups of partici-
pants and reporting possible cases of alarming ECG 
parameters. Additional analysis will be launched for 
a set of competitors participating in more than one 
edition of the race to study long-term influence of en-
durance effort on cardiac physiology in professionals 
and amateurs.
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