PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The modified artificial potential fields method in collision situations at sea

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper proposes a modified artificial potential fields (APF) method for collision avoidance at sea. The concept of artificial potentials used herein is derived from fields generated by electric charges. Attractive and repulsive forces are determined, accounting for the positions of an own vessel and a target vessel. The own vessel and its goal are considered as opposite charges. There is an attractive force between them, while the own vessel and target vessels or obstacles are considered as charges with a repulsive force between them. The values of these forces depend on the coefficients of attraction and repulsion. To solve a particular collision situation, the modified method of artificial potential fields is used. Due to the specific nature of the vessels’ movement, additional factors affecting the values of the attraction and repulsive forces are considered, as opposed to solutions used for robots. The main purpose of this article is to present the method for determining the coefficients of the APF method. This method will be used to avoid collisions at sea. From an analysis of factors influencing the execution of the vessel maneuver in a collision situation, a modified method for determining the attraction and repulsion coefficients is proposed. A case study of collision avoidance in a vessel encounter situation is also conducted.
Rocznik
Strony
73--81
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
  • Maritime University of Szczecin, Institute of Mathematics, Physics and Chemistry 1-2 Wały Chrobrego St., 70-500 Szczecin, Poland
Bibliografia
  • 1. Chen, C., Chen, X.-Q., Ma, F., Zeng, X.-J. & Wang, J. (2019) A knowledge-free path planning approach for smart ships based on reinforcement learning. Ocean Engineering 189, 106229, doi: 10.1016/j.oceaneng.2019.106299.
  • 2. Fan, X., Guo, Y., Liu, H., Wei, B. & Lyu, W. (2020) Improved artificial potential field method applied for AUV path planning. Mathematical Problems in Engineering 1, 6523158, doi: 10.1155/2020/6523158.
  • 3. Fujii, Y. & Tanaka, K. (1971) Traffic capacity. The Journal of Navigation 24(4), pp. 543–552, doi: 10.1017/ S0373463300022384.
  • 4. Furferi, R., Conti, R., Meli, E. & Ridolfi, A. (2016) Optimization of potential field method parameters through networks for swarm cooperative manipulation tasks. International Journal of Advanced Robotic Systems 13(5), doi: 10.1177/1729881416657931.
  • 5. Goodwin, E.M. (1975) A statistical study of ship domains. The Journal of Navigation 28(3), pp. 328–344, 10.1017/ S0373463300041230.
  • 6. IMO (1974) International Convention for the Safety of Life at Sea (SOLAS) (1974), International Maritime Organization.
  • 7. Mei, J.H., Arshad, M.R. & Tang, J.R. (2019) Collision risk assessment based artificial potential field approach for multi-ship avoidance. Indian Journal of Geo Marine Sciences 48 (07), pp. 1037–1047.
  • 8. Khatib, O. (1986) Real-time obstacle avoidance for manipulators and mobile robots. The International Journal of Robotics Reaserch 5(1), pp. 90–98, doi: 10.1177/ 027836498600500106.
  • 9. Lee, M., Nieh, C., Kuo, H. & Huang, J. (2020) A collision avoidance method for mutli-ship encounter situations. Journal of Marine Science and Technology 25, pp. 925–942, doi: 10.1007/s00773-019-00691-8.
  • 10. Lyu, H. & Yin, Y. (2017) Ship’s trajectory planning for collision avoidance at sea based on modified artificial potential field. IEEE 2nd International Conference on Robotics and Automation Engineering (ICRAE), 29–31 December 2017, Shanghai, China, pp. 351–357, doi: 10.1109/ ICRAE.2017.8291409.
  • 11. Mei, J.H. & Ashad, M.R. (2015) A hybrid artificial potential field method for autonomous surface vessel path planning in dynamic riverine environment. Indian Journal of Geo Marine Sciences 44(12), pp.1980–1994.
  • 12. Michalak, M., Dutkiewicz, P., Kielczewski, M. & Pazderski, D. (2009) Trajectory tracking for a mobile robot with skid-slip compensation in the vector-field-orientation control system. International Journal Applied Mathematics and Computer Science 19(4), pp. 547–559.
  • 13. Mielniczuk, S. (2017) A method of artificial potential fields for the determination of ship’s safe trajectory. Scientific Journals of the Maritime University of Szczecin, Zeszyty Naukowe Akademii Morskiej w Szczecinie 51 (123), pp. 45–49, doi: 10.17402/229.
  • 14. Oborski, P. & Fedorczyk, T. (2015) Modified potential field method for mobile robot route calculation (in Polish). Pomiary Automatyka Robotyka 19(2,), pp. 57–64.
  • 15. Pietrzykowski, Z, Magaj, J. & Wielgosz, M. (2018) Navigation decision support for sea-going ships in port approach areas. Scientific Journals of the Maritime University of Szczecin, Zeszyty Naukowe Akademii Morskiej w Szczecinie 54 (126), pp. 75–83, doi: 10.17402/288.
  • 16. Pietrzykowski, Z. & Wielgosz, M. (2021) Effective ship domain – Impact of ship size and speed. Ocean Engineering 219, 108423, doi: 10.1016/j.oceaneng.2020.108423.
  • 17. Sabudin, E.N, Omar, R. & Melor C.K.A.N.H. (2016) Potential field methods and their inherent approaches for path planning. ARPN Journal of Engineering and Applied Sciences 11(18), pp. 10801–10805.
  • 18. Śmierzchalski, R. & Michalewicz, Z. (2000) Modeling of ship trajectory in collision situations by an evolutionary algorithm. IEEE Transactions on Evolutionary Computation 4(3), pp. 227–241, doi: 10.1109/4235.873234.
  • 19. Szłapczyński, R. & Szłapczyńska, J. (2012) On evolutionary computing in multi-ship trajectory planning. Applied Intelligence 37(2), pp. 155–174, doi: 10.1007/s10489-011- 0319-7.
  • 20. Tsou, M. & Hsueh, C. (2010) The study of ship collision avoidance route planning by ant colony algorithm. Journal of Marine Science and Technology 18(5), doi: 10.51400/2709- 6998.1929.
  • 21. Uyanik, K.F. (2011) A study of artificial potential fields. [Online]. Available from: https://www.academia. edu/2007421/A_study_on_Artificial_Potential_Fields [Accessed: July 10, 2022].
  • 22. Xue, Y.Z., Han, D.F. & Tong, S.Y. (2012) Automatic trajectory planning and collision avoidance ships in confined waterways. In: Rizzuto, E., Guedes Soares, C. (Eds) Sustainable Maritime Transportation and Exploitation of Sea Resources, pp. 167–172.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e55a36b6-db1a-4702-a8ac-9505828e6571
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.