PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On Certain Limitations of Recursive Representation Model

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
There is a strong research eort towards developing models that can achieve state-of-the-art results without sacricing interpretability and simplicity. One of such is recently proposed Recursive Random Support Vector Machine (R2SVM) model, which is composed of stacked linear models. R2SVM was reported to learn deep representations outperforming many strong classi-ers like Deep Convolutional Neural Network. In this paper we try to analyze it both from theoretical and empirical perspective and show its important limitations. Analysis of similar model Deep Representation Extreme Learning Machine (DrELM) is also included. It is concluded that models in its current form achieves lower accuracy scores than Support Vector Machine with Radial Basis Function kernel.
Rocznik
Tom
Strony
37--47
Opis fizyczny
Bibliogr. 13 poz., rys.
Twórcy
  • Uniwersytet Jagielloński w Krakowie, Polska, Gołębia 24, 31-007 Kraków
autor
  • Jagiellonian University in Kraków
Bibliografia
  • [1] Bengio Y., Learning deep architectures for AI. Foundations and Trends in Machine Learning, 2009, 2.
  • [2] Podolak I.T., Roman A., Theoretical foundations and experimental results for a hierarchical classifer with overlapping clusters. Computational Intelligence, 2013, 29 (2), pp. 357 388.
  • [3] Czarnecki W.M., Tabor J., Extreme entropy machines: Robust information theoretic classification. arXiv preprint arXiv:1501.05279, 2015.
  • [4] Huang G.B., Zhu Q.Y., Siew C.K., Extreme learning machine: Theory and applications. Neurocomputing, 2006, 70 (1 3), pp. 489-501.
  • [5] Tissera M., McDonnell M., Deep extreme learning machines for classification. In: Proceedings of ELM-2014 Volume 1. vol. 3 of Proceedings in Adaptation, Learning and Optimization. Springer International Publishing 2015, pp. 345-354.
  • [6] Vinyals O., Jia Y., Deng L., Darrell T., Learning with recursive perceptual representations. In: Advances in Neural Information Processing Systems 25. Curran Associates, Inc. 2012, pp. 2825-2833.47
  • [7] Yu W., Zhuang F., He Q., Shi Z., Learning deep representations via extreme learning machines. Neurocomputing, 2015, 149, pp. 308-315.
  • [8] Wolpert D.H., Stacked generalization. Neural Networks, 1992, 5, pp. 241-259.
  • [9] Cortes C., Vapnik V., Support-vector networks. Machine Learning, 1995, 20 (3), pp. 273-297.
  • [10] Tang Y., Deep learning using linear support vector machines. In: In ICML, 2013.
  • [11] Lichman M., UCI machine learning repository, 2013.
  • [12] Chang C.C., Lin C.J., LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology, 2011, 2, pp. 27:1-27:27.
  • [13] Pedregosa F., Varoquaux G., Gramfort A., Michel V., Thirion B., Grisel O., Blondel M., Prettenhofer P., Weiss R., Dubourg V., Vanderplas J., Passos A., Cournapeau D., Brucher M., Perrot M., Duchesnay E., Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 2011, 12, pp. 2825-2830.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e558e8e0-87cc-4a87-9b97-972636ca19f1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.