Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This study focuses on improving the mechanical properties and microstructure of cement-based materials, which are crucial for the durability and safety of construction projects. Conventional cement, although commonly used, has certain limitations in terms of its mechanical strength and durability. Therefore, there is a requirement for innovative methods to enhance these properties. This study investigates the potential of nano-TiO2 (titanium dioxide) as an additive to overcome these limitations. The objective of this research is to perform a thorough experimental analysis to examine how different concentrations of nano-TiO2 impact the mechanical performance and microstructural changes in cement paste and mortar. The study examines the influence of nano-TiO2 on the compressive and flexural strengths of cementitious materials. It also explores how nano-TiO2 modifies the microstructure to enhance compactness and resilience. The results suggest that incorporating nano-TiO2 into cement leads to a substantial improvement in both compressive and flexural strengths. This enhancement is particularly notable when the nano-TiO2 concentration is at an optimal level of 1.0% by weight. The SEM and XRD analyses demonstrate that this concentration enhances the microstructure by decreasing voids and facilitating the development of C-S-H crystals. However, excessive concentration may have negative consequences, such as the creation of extra empty spaces. The results indicate that nano-TiO2 has considerable promise in enhancing cement-based materials, thereby aiding the advancement of construction materials that are more long-lasting and effective. This study contributes to the knowledge of how nano-TiO2 improves cement and emphasizes its potential uses in the construction sector.
Wydawca
Rocznik
Tom
Strony
203--214
Opis fizyczny
Bibliogr. 32 poz., fig., tab.
Twórcy
- Department of Civil Engineering, Ajloun National University, Ajloun 26810, Jordan
- Department of Civil Engineering, Ajloun National University, Ajloun 26810, Jordan
autor
- Department of Civil Engineering, Ajloun National University, Ajloun 26810, Jordan
autor
- Department of Natural Resources and Chemical Engineering, Tafila Technical University, Tafila 66110, Jordan
Bibliografia
- 1. Daniyal M, Akhtar S, Azam A. Effect of nano-TiO2 on the properties of cementitious composites under different exposure environments. Journal of Materials Research and Technology 2019; 8: 6158–72. https://doi.org/10.1016/J.JMRT.2019.10.010.
- 2. Saradar A, Rezakhani Y, Rahmati K, Johari Majd F, Mohtasham Moein M, Karakouzian M. Investigating the properties and microstructure of high-performance cement composites with nano-silica, silica fume, and ultra-fine TiO2. Innovative Infrastructure Solutions 2024; 9(4): 1–31. https://doi.org/10.1007/S41062-024-01407-7
- 3. Moro C, Dissertation A. Influence of nano-TiO2 addition on the environmental performance of cementitious composites: A Holistic Approach 2021.
- 4. Li C, Li J, Ren Q, Zheng Q, Jiang Z. Durability of concrete coupled with life cycle assessment: Review and perspective. Cem Concr Compos 2023; 139: 105041. https://doi.org/10.1016/J.CEMCONCOMP.2023.105041.
- 5. Janev D, Nakov D, Arangjelovski T. Concrete for resilient infrastructure: review of benefits, Challenges and Solutions 2023.
- 6. Barbhuiya S, Kanavaris F, Das BB, Idrees M. Decarbonising cement and concrete production: Strategies, challenges and pathways for sustainable development. Journal of Building Engineering 2024; 86: 108861. https://doi.org/10.1016/J.JOBE.2024.108861.
- 7. Sanchez F, Sobolev K. Nanotechnology in concrete – A review. Constr Build Mater 2010; 24: 2060–71. https://doi.org/10.1016/J.CONBUILDMAT.2010.03.014.
- 8. Florean CT, Vermesan H, Thalmaier G, Neamtu BV., Gabor T, Campian C, Hegyi A, Csapai A. The Influence of TiO2 nanoparticles on the physico–mechanical and structural characteristics of cementitious materials. Coatings 2024; 14: 218. https://doi.org/10.3390/COATINGS14020218.
- 9. Nazari A, Riahi S. The effects of TiO2 nanoparticles on properties of binary blended concrete. J Compos Mater 2011; 45: 1181–8. https://doi.org/10.1177/0021998310378910/A S-SET/0021998310378910.FP.PNG_V03.
- 10. Zhang R, Cheng X, Hou P, Ye Z. Influences of nano-TiO2 on the properties of cement-based materials: Hydration and drying shrinkage. Constr Build Mater 2015; 81: 35–41. https://doi.org/10.1016/J.CONBUILDMAT.2015.02.003.
- 11. Li H, Zhang M Hua, Ou J Ping. Flexural fatigue performance of concrete containing nano-particles for pavement. Int J Fatigue 2007; 29: 1292–301. https://doi.org/10.1016/J.IJFATIGUE.2006.10.004.
- 12. Vaid U, Balwinder Lallotra D. Effect on concrete strength and durability with partial replacement of cement by Nano-titanium dioxide (nano-TiO2) and ground granulated blast furnace slag (GGBS): A Review Summary. IOP Conf Ser Earth Environ Sci 2024; 1326: 012046. https://doi.org/10.1088/1755-1315/1326/1/012046.
- 13. Chen J, Poon CS. Photocatalytic activity of titanium dioxide modified concrete materials – Influence of utilizing recycled glass cullets as aggregates. J Environ Manage 2009; 90: 3436–42. https://doi.org/10.1016/J.JENVMAN.2009.05.029.
- 14. Chen J, Kou SC, Poon CS. Hydration and properties of nano-TiO2 blended cement composites. Cem Concr Compos 2012; 34: 642–9. https://doi.org/10.1016/J.CEMCONCOMP.2012.02.009.
- 15. Kawakami M, Furumura T, Tokushige H. NOx removal effects and physical properties of cement mortar incorporating titanium dioxide powder. Proceedings RILEM Symposium France RILEM Publications, 2007; 1: 63–70.
- 16. Nazari A, Riahi S, Shemekhi SF. Benefits of Fe2O3 nanoparticles in concrete mixing matrix. Journal of American Science 2010; 6: 102–6.
- 17. Nazari A, Riahi S, Riahi S, Fatemeh Shamekhi S, Khademno A. Improvement the mechanical properties of the cementitious composite by using TiO2 nanoparticles. Journal of American Science 2010;6.
- 18. Raki L, Beaudoin J, Alizadeh R, Makar J, Sato T. Cement and Concrete Nanoscience and Nanotechnology. Materials 2010; 3: 918–942. https://doi.org/10.3390/MA3020918
- 19. Senff L, Hotza D, Lucas S, Ferreira VM, Labrincha JA. Effect of nano-SiO2 and nano-TiO2 addition on the rheological behavior and the hardened properties of cement mortars. Materials Science and Engineering: A 2012; 532: 354–61. https://doi.org/10.1016/J.MSEA.2011.10.102.
- 20. Xiong G, Deng M, Xu L, Tang M. Properties of cementbased composites by doping nano-TiO2. Journal of the Chinese Ceramic Society 2006; 34: 1158–61.
- 21. Land G, Stephan D. The influence of nano-silica on the hydration of ordinary Portland cement. J Mater Sci 2012; 47: 1011–7. https://doi.org/10.1007/S10853-011-5881-1/FIGURES/7
- 22. ASTM International. ASTM C1437-99 Standard Test Method for Flow of Hydraulic Cement Mortar. 1999.
- 23. European Committee for Standardization (CEN). EN 1015-3. Methods of test for mortar for masonry - Part 3: Determination of consistence of fresh mortar (by flow table). 2007.
- 24. European Committee for Standardization (CEN). EN 1015-11. Methods of test for mortar for masonry - Part 11: Determination of flexural and compressive strength of hardened mortar. 1999.
- 25. European Committee for Standardization (CEN). EN 196-1 Methods of testing cement – Part 1: Determination of strength. 2005.
- 26. Abdallah M, Rehab W, Tamimi A, Hamed A, Salama E-S. Performance, Measurements and Potential Radiological Risks of Natural Radioactivity in Cements Used in Jordan 2022.
- 27. Jiang J, Dong X, Wang H, Wang F, Li Y, Lu Z. Enhanced mechanical and photocatalytic performance of cement mortar reinforced by nano-TiO2 hydrosol-coated sand. Cem Concr Compos 2023;137:104906. https://doi.org/10.1016/J.CEMCONCOMP.2022.104906.
- 28. Gougazeh M, Alsaqoor S, Borowski G, Alsafasfeh A, Hdaib I. The Behavior of Jordanian Oil Shale during Combustion Process from the El-Lajjun Deposit. Journal of Ecological Engineering 2022; 23: 132–9. https://doi.org/10.12911/22998993/150682.
- 29. Alsafasfeh A, Alawabdeh M, Alfuqara D, Gougazeh M, Amaireh MN. Oil Shale Ash as a Substitutional Green Component in Cement Production. Advances in Science and Technology Research Journal 2022; 16: 157–62. https://doi.org/10.12913/22998624/152464.
- 30. Givi AN, Nazari A. Naji Givi, et al, Fe2O3 nanoparticles in Concrete. Journal of American Science 2010; 6.
- 31. Walker R, Pavía S. Physical properties and reactivity of pozzolans, and their influence on the properties of lime-pozzolan pastes. Materials and Structures/Materiaux et Constructions 2011; 44: 1139–50. https://doi.org/10.1617/S11527-010-9689-2/FIGURES/8.
- 32. Nili M, Ehsani A. Investigating the effect of the cement paste and transition zone on strength development of concrete containing nanosilica and silica fume. Mater Des 2015; 75: 174–83. https://doi.org/10.1016/J.MATDES.2015.03.024.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e5515f3d-fd40-4e13-ac96-8dbd84bbda01
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.