PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Assessment of the acoustic microclimate and rating of noise hazards in the inner transport system of a bucket wheel excavator: a case study

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Noise and acoustic microclimate have an important influence on working conditions in industry. However, there are many sources of noise in machinery that create occupational hazards. In particular, these problems occur in belt conveyors, which are components of integrated continuous material handling systems. In large heavy-duty machines used for surface mining (bucket wheel, bucket chain excavators, and stackers), the most acoustically active areas are located in the zones of conveyor lines. For this reason, the present article presents the results of comprehensive research of noise in a transport system in a bucket wheel excavator operated in a surface mine. The most significant sources of noise were tested. Two analysis approaches (deterministic and probabilistic) were applied. Lower values of permissible exposure time were obtained using the latter method. This approach should be selected, as it takes into account the real conditions of operation of the tested object. The research and analysis showed that in real operating conditions of large working machines (multi-bucket wheeled excavators), the noise level cannot be treated in deterministic categories. This is due (among other factors) to the fact that the working loads are randomly variable in various operating conditions, which also causes the nature of noise in the area of these machines and their surroundings to change randomly. For this reason, the acoustic climate and the assessment of the level of noise hazards in such machines should be analyzed by taking into account the random nature of noise.
Czasopismo
Rocznik
Strony
187--200
Opis fizyczny
Bibliogr. 41 poz.
Twórcy
  • Wroclaw University of Science and Technology; Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
  • Wroclaw University of Science and Technology; Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
Bibliografia
  • 1. Andrejiova, M. & Grincova, A. & Marasova, D. Monitoring dynamic loading of conveyor belts by measuring local peak impact forces. Measurement. 2020. Vol. 158(107690).
  • 2. Bortnowski, P. & Nowak-Szpak, A. & Krol, R. & Ozdoba, M. Analysis and distribution of conveyor belt noise sources under laboratory conditions. Sustainability. 2021. Vol. 13(2233). P. 1-14.
  • 3. Bortnowski, P. & Nowak-Szpak, A. & Ozdoba, M. & Krol, R. The Acoustic Camera as a Tool to Identify Belt Conveyor Noises. Journal of Sustainable Mining. 2020. Vol. 19. Iss. 4. Article 7.
  • 4. Brown, S. Conveyor noise specification and control. In: Conference paper 2004 Annual Conference of the Australian Acoustical Society. 3-5 November 2004. Proceedings of ACOUSTICS. 2004. P. 269-76.
  • 5. Chen, Y. & Zhang, M. & Qiu, W. & Sun, X. & Wang, X. & Dong, Y. & Chen, Z. & Hu, W. Prevalence and determinants of noise-induced hearing loss among workers in the automotive industry in China: A pilot study. J. Occup. Health. 2019. Vol. 61. P. 387-397.
  • 6. Dudek, K. & Sokolski, M. Improved vibroacoustic characteristics - A goal to be pursued in the open pit mining machinery of the XXI century. In: Proceedings of the American-Polish Mining Symposium Mining in the new millennium. Challenges and opportunities. Las Vegas. Nevada. USA. 8 October 2000 (ed. Tad S. Golosinski). Rotterdam; Brookfield. A. A. Balkema. P. 193-199.
  • 7. Engel, JR. & Kosala, K. Sources of vibroacoustic hazards in open-pit mines of mineral raw materials. Archives of Acoustics. 2007. Vol. 32(2). P. 251-262.
  • 8. Fiebig, W. & Dabrowski, D. Use of acoustic camera for noise sources localization and noise reduction in the industrial plant. Archives of Acoustics. 2020. Vol. 45(1). P. 111-117.
  • 9. Gao, Y. & Qiao, T. & Zhang, H. & Yang, Y. & Pang, Y. & Wei, H. A contactless measuring speed system of belt conveyor based on machine vision and machine learning. Measurement. 2019. Vol. 139. P. 127-133.
  • 10. Gładysiewicz, L. & Król, R. & Kisielewski, W. Measurements of loads on belt conveyor idlers operated in real conditions. Measurement. 2019. Vol. 134. P. 336-344.
  • 11. Gupta, A. & Gupta, A. & Jain, K. & Gupta, S. Noise pollution and impact on children health. Indian J Pediatr. 2018. Vol. 85(4). P. 300-306.
  • 12. Hao, N. & Zhang, J. & Zhang, M. & Zhang, Y. Experimental research on vibration and noise of rail conveyor. Energy Reports. 2021. Vol. 7. Supplement. P. 494-504.
  • 13. Ikenna, C. & et al. Transportation noise exposure, noise annoyance and respiratory health in adults: A repeated-measures study. Environment International. 2018. Vol. 121. Part 1. P. 741-750.
  • 14. Klimenda, F. & Soukup, J. & Sterba, J. Noise and vibration analysis of conveyor belt. Manufacturing Technology. 2019. Vol. 19. No. 4. P. 604-608.
  • 15. Kłaczyński, M. & Grzeczka, G. Assessment of noise and vibration hazards generated by hybrid PEM-FC personal power supply. Journal of Vibroengineering. 2018. Vol. 20. No. 7. P. 2771-2780.
  • 16. Korbiel, T. & et al. Recognition of the 24-hour noise exposure of a human. Archives of Acoustics. 2017. Vol. 42. No 4. P. 601-607.
  • 17. Kosala, K. & Stepien, B. Analysis of noise pollution in an andesite quarry with the use of simulation studies and evaluation indices. Int. J. Occup. Saf. Ergon. 2016. Vol. 22. P. 92-101.
  • 18. Kumar, C.V. & Murthy, C.S. & Vardhan, H. Noise assessment in mines - a critical review. Concurrent Advances in Mechanical Engineering. 2016. Vol. 2. P. 6-11.
  • 19. Lawson, S.M. & Masterson, E.A. & Azman, A.S. Prevalence of hearing loss among noise-exposed workers within the mining and oil and gas extraction sectors. 2006-2015. Am. J. Ind. Med. 2019. Vol. 62. P. 826-837.
  • 20. Lin, J. & Wang, H. & Yan, F. & Tang, K. & Zhu, H. & Weng, Z et al. Effects of occupational exposure to noise and dust on blood pressure in Chinese industrial workers. Clin Exp Hypertens. 2018. Vol. 40(3). P. 257-261.
  • 21. Mirza, R. & Kirchner, D.B. & Dobie, R.A. & Crawford, J. occupational noise-induced hearing loss. J. Occup. Environ. Med. 2018. Vol. 60. P. 498-501.
  • 22. Monam, G.G. & Chimbari, M.J. & Hongorom, C. A systematic review on occupational hazards, injuries and diseases among police officers worldwide: policy implications for the South African police service. J Occup Med Toxicol. 2019. Vol. 14(1). P. 1-15.
  • 23. Moravec, M. & Badida, M. & Jamborova, M. & Badidova, A. Conveyor failure diagnostics using sound visualization technique. Adv. Sci. Technol. Res. J. 2018. Vol. 12. P. 144-150.
  • 24. Moravec, M. & Badida, M. & Mikusova, N. & Sobotova, L. & Svajlenka, J. & Dzuro, T. Proposed options for noise reduction from a wastewater treatment plant: case study. Sustainability. 2021. Vol. 13(2409). P. 1-22.
  • 25. Munzel, T. & Schmidt, F. & Gori, T. Environmental hazards, air pollution, and noise as novel cardiovascular risk factors. Eur Heart J. 2015. Vol. 36(28). P. 1777-9.
  • 26. Ngoc Bich, N. & Hong Giang, H.T. & Tan Khoa, V. & Anh Tuan, N. Exposure to noise induced at work and prevention practice among workers of stone mining company, An Giang, 2018. Inzynieria Mineralna - Journal of the Polish Mineral Engineering Society. 2020. Vol. 1. No. 2. P. 283-289.
  • 27. Prikhodko, A. Dynamic analysis of intermittent-motion conveyor actuator. Actuators. 2021. Vol. 10(174). P. 1-12.
  • 28. Rabeiy, R. & Tahlawi, M.R. & Boghdady, G. Occupational health hazards in the Sukari Gold Mine, Egypt. Journal of African Earth Sciences. 2018. Vol. 146. P. 209-216.
  • 29. Sensogut, C. Occupational noise in mines and its control - a case study. Polish Journal of Environmental Studies. 2007. Vol. 16. P. 933-936.
  • 30. Simion, S. & Vreme, C. & Kovacs, M. Exposure of workers to noise in mining industry. In: 12th International Symposium Acoustics and Vibration of Mechanical Structures (AVMS 2013). Timisoara, Romania. 2013.
  • 31. Skoczylas, A. & Stefaniak, P. & Anufriiev, S. & Jachnik, B. Belt conveyors rollers diagnostics based on acoustic signal collected using autonomous legged inspection robot. Appl. Sci. 2021. Vol. 11(2299). P. 1-13.
  • 32. Sokolski, M. Wysoki poziom zagrożeń akustyczny - atrybut degradacji maszyn podstawowych. Górnictwo Odkrywkowe. 2007. Vol. 49. No. 3/4. P. 148-152. [In Polish: High vibroacoustic hazards level - attribute of the degradation of the open pit mining machinery].
  • 33. Sokolski, M. & Sokolski, P. Acoustic climate in the cabins as a factor of rebuilding effectiveness of long term operated bucket wheel excavators - a case study. In: 23rd International Conference Engineering Mechanics 2017. Svratka. Czech Republic. 15-18 May 2017. P. 906-909.
  • 34. Sokolski, P. & Sokolski, M. Evaluation of acoustic hazards in the “hot spots” of noise of a belt conveyor in the bucket wheel excavator. In: Proceedings of the V Georgian-Polish International Scientific-Technical Conference Transport Bridge Europe-Asia. Kutaisi, Georgia. 15-17.10.2019. Kutaisi: Akaki Tsereteli State University. 2019. P. 97-104.
  • 35. Themann, C.L. & Masterson, E.A. Occupational noise exposure: A review of its effects, epidemiology, and impact with recommendations for reducing its burden. J. Acoust. Soc. Am. 2019. Vol. 146. P. 3879-3905.
  • 36. Wang, J.T. Underground noise on the physical effect of miners. In: Proceedings of the 4th International Symposium on Mine Safety. Liaon Tech Univ. Fuxin. Peoples R China. 2012. P. 499-501.
  • 37. Zhao X. & et al. Analysis and evaluation of “noise” of occupational hazards in pumped storage power station. In: AIP Conference Proceedings. 2017. Vol. 1839(020123). P. 1-6.
  • 38. Zheng, J. & Zhang, S. & Wang, H. & Yu, Y. & Hu, W. Surveillance of noise exposure level in the manufacturing industry - China, 2020. China CDC Wkly. 2021. Vol. 3(43). P. 906-910.
  • 39. Zimroz, R. & Król, R. Failure analysis of belt conveyor systems for condition monitoring purposes. Arch.Min. Sci. 2009. Vol. 128. P. 255-270.
  • 40. Zuidema, C. & Sousan, S. & Stebounova L.V. & et al. Mapping occupational hazards with a multi-sensor network in a heavy-vehicle manufacturing facility. Ann Work Expo Health. 2019. Vol. 63. P. 280-293.
  • 41. Zuidema, C. & Stebounova, LV. & Sousan, S. & et al. Estimating personal exposures from a multi-hazard sensor network. J Exposure Sci Environ Epidemiol. 2019. Vol. 30(6). P. 1013-1022.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e54e2279-f3d1-4fbf-8570-afcc601a2202
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.