PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Hybrid reliability analysis method for systems with random and non-parameterized p-boxes based on weight coefficients

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper establishes a hybrid variable system failure probability optimization model based on sampling methods and weighting coefficients. By introducing auxiliary input variables, important sampling functions, and p-box, failure samples are mapped from the random variable space to the p-box variable space. The new weight coefficients are constructed, including important sampling weights and interval weights. Combining discretization methods and Monte Carlo simulation (MCS), the interval weights are transformed into variables, and constraints conforming to the p-box variable distribution are constructed. After calculating the weighting coefficients for all failure samples, the new failure probability optimization model is built. This model is independent of the performance functions and does not involve cyclic optimization, with computational complexity only related to the dimensions. Six cases are used for method comparison, validating that the new method exhibits higher efficiency and accuracy.
Rocznik
Strony
art. no. 191458
Opis fizyczny
Bibliogr. 49 poz., rys., tab., wykr.
Twórcy
autor
  • School of Mechanical Engineering, Beijing Institute of Technology, China
autor
  • School of Mechanical Engineering, Beijing Institute of Technology, China
autor
  • School of Mechanical Engineering, Beijing Institute of Technology, China
autor
  • School of Aeronautics and Astronautics, Sichuan University, China
autor
  • School of Mechanical Engineering, Beijing Institute of Technology, China
Bibliografia
  • 1. Abdalrdha ZK, Al-Bakry AM, Farhan AK. Analysis of social networks and filtering of Arabic crime tweets based on an intelligent dictionary using a genetic algorithm. Global Journal of Engineering and Technology Advances, 2024; 18(02): 177–191. DOI: 10.30574/gjeta.2024.18.2.0033.
  • 2. Ajenjo A, Ardillon E, Chabridon V, Iooss B, Cogan S, Sadoulet-Reboul E. An info-gap framework for robustness assessment of epistemic uncertainty models in hybrid structural reliability analysis. Structural Safety, 2022; 96. DOI: 10.1016/j.strusafe.2022.102196.
  • 3. Alhussan AA, Farhan AK, Abdelhamid AA, El-Kenawy ESM, Ibrahim A, Khafaga DS. Optimized ensemble model for wind power forecasting using hybrid whale and dipper-throated optimization algorithms. Frontiers inEnergy Research, 2023; 11, 1174910. DOI: 10.3389/fenrg.2023.1174910.
  • 4. Alvarez DA, Uribe F, Hurtado JE. Estimation of the lower and upper bounds on the probability of failure using subset simulation and random set theory. Mechanical Systems and Signal Processing, 2018; 100: 782-801. DOI: 10.1016/j.ymssp.2017.07.040.
  • 5. Certa A, Hopps F, Inghilleri R, La Fata CM. A Dempster-Shafer Theory-based approach to the Failure Mode, Effects and Criticality Analysis (FMECA) under epistemic uncertainty: application to the propulsion system of a fishing vessel. Reliability Engineering & System Safety, 2017;159:69-79. DOI:10.1016/j.ress.2016.10.018.
  • 6. Dang C, Valdebenito MA, Faes MGR, Wei P, Beer M. Structural reliability analysis: A Bayesian perspective. Structural Safety, 2022; 99. DOI: 10.1016/j.strusafe.2022.102259.
  • 7. de Angelis M, Patelli E, Beer M. Advanced Line Sampling for efficient robust reliability analysis. Structural Safety, 2015; 52:170-82. DOI: 10.1016/j.strusafe.2014.10.002.
  • 8. Echard B, Gayton N, Lemaire M. AK-MCS: An active learning reliability method combining Kriging and Monte Carlo Simulation. Structural Safety, 2011;33:145-54. DOI:10.1016/j.strusafe.2011.01.002.
  • 9. Faes MGR, Daub M, Marelli S, Patelli E, Beer M. Engineering analysis with probability boxes: A review on computational methods. Structural Safety, 2021;93. DOI:10.1016/j.strusafe.2021.102092.
  • 10. Guan XL, Melchers REJSS. Effect of response surface parameter variation on structural reliability estimates. Structural Safety, 2001; 23(4):429-444.DOI:10.1016/S0167-4730(02)00013-9.
  • 11. Helton JC, Johnson JD, Oberkampf WL. An exploration of alternative approaches to the representation of uncertainty in model predictions. Reliability Engineering & System Safety, 2004; 85:39-71. DOI:10.1016/j.ress.2004.03.025.
  • 12. Hussain Ali Y, Chinnaperumal S, Marappan R, Raju SK, Sadiq AT, Farhan AK, Srinivasan P. Multi-Layered Non-Local Bayes Model for Lung Cancer Early Diagnosis Prediction with the Internet of Medical Things. Bioengineering. 2023; 10(2):138. DOI: 10.3390/bioengineering10020138.
  • 13. Hussain Ali Y, SabuChooralil V, Balasubramanian K, Manyam RR, Kidambi Raju S, T. Sadiq A, Farhan AK. Optimization system based on convolutional neural network and internet of medical things for early diagnosis of lung cancer. Bioengineering, 2023; 10:320. DOI: 10.3390/bioengineering10030320.
  • 14. Kang Z, Zhang W. Construction and application of an ellipsoidal convex model using a semi-definite programming formulation from measured data. Computer Methods in Applied Mechanics and Engineering, 2016; 300: 461-89. DOI: 10.1016/j.cma.2015.11.025.
  • 15. Kamal Z A , Kadhim A .Generating dynamic S-BOX based on Particle Swarm Optimization and Chaos Theory for AES. IRAQI JOURNAL OF SCIENCE, 2018; 59(3c):1733-1745. DOI:10.24996/ijs.2018.59.3c.18.
  • 16. Li JW, Jiang C, Ni BY. An Efficient Uncertainty Propagation Analysis Method for Problems Involving Non-Parameterized Probability-Boxes. Journal of Mechanical Design, 2021;143. DOI:10.1115/1.4050559.
  • 17. Liang H , Mi J , Bai L ,et al.Imprecise sensitivity analysis of system reliability based on the Bayesian network and probability box. Eksploatacja i Niezawodność – Maintenance and Reliability, 2020; 22(3): 508-519. DOI:10.17531/EIN.2020.3.14.
  • 18. Liu HB, Jiang C, Jia XY, Long XY, Zhang Z, Guan FJ. A new uncertainty propagation method for problems with parameterized probability-boxes. Reliability Engineering & System Safety, 2018;172:64-73. DOI:10.1016/j.ress.2017.12.004.
  • 19. Liu HB, Jiang C, Liu J, Mao JZ. Uncertainty propagation analysis using sparse grid technique and saddlepoint approximation based on parameterized p-box representation. Structural and Multidisciplinary Optimization, 2018; 59: 61-74. DOI: 10.1007/s00158-018-2049-5.
  • 20. Liu HB, Jiang C, Xiao Z. Efficient uncertainty propagation for parameterized p-box using sparse-decomposition-based polynomial chaos expansion. Mechanical Systems and Signal Processing, 2020; 138. DOI:10.1016/j.ymssp.2019.106589.
  • 21. Liu X, Kuang Z, Yin L, Hu L. Structural reliability analysis based on probability and probability box hybrid model. Structural Safety, 2017;68:73-84. DOI:10.1016/j.strusafe.2017.06.002
  • 22. Liu X, Li T, Zhou Z, Hu L. An efficient multi-objective reliability-based design optimization method for structure based on probability and interval hybrid model. Computer Methods in Applied Mechanics and Engineering, 2022; 392. DOI: 10.1016/j.cma.2022.114682.
  • 23. Meng Z, Zhao J, Chen G, Yang D. Hybrid uncertainty propagation and reliability analysis using direct probability integral method and exponential convex model. Reliability Engineering & System Safety, 2022; 228. DOI: 10.1016/j.ress.2022.108803.
  • 24. Montes I, Destercke S. On extreme points of p-boxes and belief functions. Annals of Mathematics and Artificial Intelligence, 2017; 81:405-28. DOI:10.1007/978-3-319-42972-4_45.
  • 25. Oberkampf W L, Helton J C, Joslyn C A,et al. Challenge problems: uncertainty in system response given uncertain parameters. Reliability Engineering & System Safety, 2004; 85(1-3):11-19. DOI:10.1016/j.ress.2004.03.002.
  • 26. Pedroni N, Zio E, Apostolakis GEJRE, Safety S. Comparison of bootstrapped artificial neural networks and quadratic response surfaces for the estimation of the functional failure probability of a thermal-hydraulic passive system. Reliability Engineering & System Safety, 2012; 95(4):386-395. DOI:10.1016/j.ress.2009.11.009.
  • 27. Rekuc SJ, Aughenbaugh JM, Bruns M, Paredis C. Eliminating Design Alternatives Based on Imprecise Information. Sae Technical Papers, 2006. DOI:10.4271/2006-01-0272.
  • 28. Roy A, Chakraborty S. Support vector machine in structural reliability analysis: A review. Reliability Engineering & System Safety, 2023; 233. DOI: 10.1016/j.ress.2023.109126.
  • 29. Schöbi R, Sudret B. Structural reliability analysis for p-boxes using multi-level meta-models. Probabilistic Engineering Mechanics, 2017;48:27-38. DOI:10.1016/j.probengmech.2017.04.001.
  • 30. Schobi R, Sudret B. Global sensitivity analysis in the context of imprecise probabilities (p-boxes) using sparse polynomial chaos expansions. Reliability Engineering & System Safety, 2019; 187(JUL.):129-141.DOI:10.1016/j.ress.2018.11.021.
  • 31. Song Y, Mi J, Cheng Y, Bai L, Chen K. A Dependency Bounds Analysis Method for Reliability Assessment of Complex System with Hybrid Uncertainty. Reliability Engineering & System Safety, 2020; 204: 107119. DOI: 10.1016/j.ress.2020.107119.
  • 32. Soundappan P, Nikolaidis E, Haftka RT, Grandhi R, Canfield R. Comparison of evidence theory and Bayesian theory for uncertainty modeling. Reliability Engineering & System Safety, 2004; 85:295-311. DOI:10.1016/j.ress.2004.03.018.
  • 33. Xiao N-C, Yuan K, Zhou C. Adaptive kriging-based efficient reliability method for structural systems with multiple failure modes and mixed variables. Computer Methods in Applied Mechanics and Engineering, 2020; 359. DOI: 10.1016/j.cma.2019.112649.
  • 34. Xiao T, Park C, Lin C, Ouyang L, Ma Y. Hybrid reliability analysis with incomplete interval data based on adaptive Kriging. Reliability Engineering & System Safety, 2023; 237.DOI: 10.1016/j.ress.2023.109362.
  • 35. Xie J ,Tian Z ,Zhi P , et al. Reliability analysis method of coupling optimal importance sampling density and multi-fidelity Kriging model. Eksploatacja i Niezawodność – Maintenance and Reliability, 2023; 25 (2). DOI: 10.17531/ein/161893.
  • 36. Xie H, Li J, Liao D. A new structural reliability analysis method under non-parameterized probability box variables. Structural and Multidisciplinary Optimization, 2022; 65(11):1-10. DOI:10.1007/s00158-022-03408-5.
  • 37. Yang X, Liu Y, Zhang Y, Yue Z. Hybrid reliability analysis with both random and probability-box variables. Acta Mechanica, 2014;226:1341-57. DOI:10.1007/s00707-014-1252-8.
  • 38. Yang X, Wang T, Li J, Chen Z. Bounds approximation of limit‐state surface based on active learning Kriging model with truncated candidate region for random‐interval hybrid reliability analysis. International Journal for Numerical Methods in Engineering, 2019; 121:1345-66. DOI:10.1002/nme.6269.
  • 39. Yan Y, Zhou J, Yin Y, Nie H, Wei X, Liang T. Reliability Estimation of Retraction Mechanism Kinematic Accuracy under Small Sample. Eksploatacja i Niezawodność – Maintenance and Reliability, 2023. DOI:10.17531/ein/174777.
  • 40. Yin H, Yu D, Xia B. Reliability-based topology optimization for structures using fuzzy set model. Computer Methods in Applied Mechanics and Engineering, 2018; 333:197-217. DOI: 10.1016/j.cma.2018.01.019.
  • 41. Yun W, Lu Z, Feng K, Jiang X. A novel step-wise AK-MCS method for efficient estimation of fuzzy failure probability under probability inputs and fuzzy state assumption. Engineering Structures, 2019; 183: 340-50. DOI: 10.1016/j.engstruct.2019.01.020.
  • 42. Zhan H, Xiao NC, Ji Y. An adaptive parallel learning dependent Kriging model for small failure probability problems. Reliability Engineering & System Safety, 2022; 222:108403-. DOI:10.1016/j.ress.2022.108403.
  • 43. Zhang H. Interval importance sampling method for finite element-based structural reliability assessment under parameter uncertainties. Structural Safety, 2012;38:1-10. DOI:10.1016/j.strusafe.2012.01.003.
  • 44. Zhang H, Dai H, Beer M, Wang W. Structural reliability analysis on the basis of small samples: An interval quasi-Monte Carlo method. Mechanical Systems and Signal Processing, 2013;37:137-51. DOI:10.1016/j.ymssp.2012.03.001.
  • 45. Zhang H, Mullen RL, Muhanna RL. Interval Monte Carlo methods for structural reliability. Structural Safety, 2010; 32:183-90. DOI:10.1016/j.strusafe.2010.01.001.
  • 46. Zhang J, Xiao M, Gao L, Chu S. A bounding-limit-state-surface-based active learning Kriging method for hybrid reliability analysis under random and probability-box variables. Mechanical Systems and Signal Processing, 2019; 134. DOI:10.1016/j.ymssp.2019.106310.
  • 47. Zhang K , Chen N , Liu J , Yin S, Beer M. An efficient meta-model-based method for uncertainty propagation problems involving non-parameterized probability-boxes. Reliability Engineering & System Safety, 2023. DOI: 10.1016/j.ress.2023.109477.
  • 48. Zhang L ,Zhang J ,Zhai H , et al. A new assessment method of mechanism reliability based on chance measure under fuzzy and random uncertainties. Eksploatacja i Niezawodność – Maintenance and Reliability, 2018; 20(2):219-228. DOI:10.17531/ein.2018.2.06.
  • 49. 4Zhao X, Qunwang Z, Zhe Z, Wenqi B, Haibo L. A collaborative quasi-Monte Carlo uncertainty propagation analysis method for multiple types of epistemic uncertainty quantified by probability boxes. Structural and Multidisciplinary Optimization, 2023; 66(5). DOI:10.1007/s00158-023-03564-2.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e54a7380-d895-40eb-8816-21a23c2b98cd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.