PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Real time gesture recognition in 3d space using selected classifiers

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, authors propose a solution to track gestures of hands in 3-dimensional space that can be inserted into a CAVE3D environment. Idea of gestures recognition system is described and the results of research made on a recorded gesture data. In this study three selected classifiers to resolve this problem have been tested and results compared.
Rocznik
Strony
14--18
Opis fizyczny
Bibliogr. 15 poz., rys., tab.
Twórcy
autor
  • Bialystok University of Technology, Faculty of Informatics, ul. Wiejska 45A, 15-315 Bialystok, Poland
autor
  • Bialystok University of Technology, Faculty of Informatics, ul. Wiejska 45A, 15-315 Bialystok, Poland
Bibliografia
  • 1. Akl A., Chen Feng, Valaee S. (2011), A Novel Accelerometer-Based Gesture Recognition System, “Signal Processing”, IEEE Transactions on, vol.59, no.12, pp.6197-6205.
  • 2. Ruize Xu, Shengli Zhou, Li W.J. (2012), MEMS Accelerometer Based Nonspecific-User Hand Gesture Recognition, “Sensors Journal”, IEEE, vol.12, no.5, pp.1166-1173.
  • 3. Li Liu, Ling Shao (2013), Synthesis of spatiotemporal descriptors for dynamic hand gesture recognition using genetic programming, in: Automatic Face and Gesture Recognition (FG), 10th IEEE International Conference and Workshops on, vol., no., pp.1-7, 22-26 April.
  • 4. Bodiroza S., Doisy G., Hafner V.V. (2013), Positioninvariant, real-time gesture recognition based on dynamic time warping, “Human-Robot Interaction” (HRI), 8th ACM/IEEE International Conference on, vol., no., pp.87,88, 3-6 March.
  • 5. Shiravandi S., Rahmati M., Mahmoudi F. (2013), Hand gestures recognition using dynamic Bayesian networks, in: AI & Robotics and 5th RoboCup Iran Open International Symposium (RIOS), 2013 3rd Joint Conference of , vol., no., pp.1,6, 8-8 April.
  • 6. Suarez J., Murphy R.R. (2012), Hand gesture recognition with depth images: A review. “RO-MAN”, IEEE , vol., no., pp.411-417, 9-13 Sept.
  • 7. Miranda L., Vieira T., Martinez D., Lewiner T., Vieira A.W., Campos M.F.M. (2012), Real-Time Gesture Recognition from Depth Data through Key Poses Learning and Decision Forests, in: Graphics, Patterns and Images (SIBGRAPI), 2012 25th SIBGRAPI Conference on , vol., no., pp. 268-275, 22-25 Aug. 2012.
  • 8. Youwen Wang, Cheng Yang, Xiaoyu Wu, Shengmiao Xu, Hui Li (2012), Kinect Based Dynamic Hand Gesture Recognition Algorithm Research, in: Intelligent Human-Machine Systems and Cybernetics (IHMSC), 4th International Conference on, vol.1, pp.274-279, 26-27 Aug.
  • 9. Zhong Yang, Yi Li, Weidong Chen, Yang Zheng (2012), Dynamic hand gesture recognition using hidden Markov models, in: Computer Science & Education (ICCSE), 2012 7th International Conference on, pp.360-365, 14-17 July.
  • 10. http://www.microsoft.com/en-us/kinectforwindows/, 12 Feb. 2014.
  • 11. Autor ?? (1995), Introduction to artificial neural networks, in: Electronic Technology Directions to the Year 2000, 1995. Proceedings., pp. 36-62, 23-25 May.
  • 12. Burges C. J. C. (1998), A tutorial on support vector machines for pattern recognition, Data Min. Knowl. Discov. 2, pp. 121–167.
  • 13. Lee Y., Lin Y., Wahba G. (2001), Multicategory Support Vector Machines, “Computing Science and Statistic”, 33.
  • 14. Daqi G., Chen Mingming, Li Yongli (2005), A single-layer radial basis function network classifier and its applications, in: Neural Networks, 2005. IJCNN ‘05. Proceedings. 2005 IEEE International Joint Conference on , vol.2, no., pp.1045-1050 vol. 2, 31 July-4 Aug.
  • 15. h t t p : / / w w w . b i a l y s t o k o n l i n e . p l / g f x _artykuly/201211/67014.jpg, 18 Feb. 2014
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e5464715-bee6-43da-93e1-1343ccaed418
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.