PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigation of Salt and precipitating agent effect on the specific surface area and compressive strength of alumina catalyst support

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Nowadays, catalyst supports are extensively used to decrease the costs and increase the contact surface area in chemical reactions. Specific surface area, compressive strength, pore volume and pore size are some of the most important characteristics of a catalyst support. In this work, Sol-gel and peptization methods were applied to produce alumina catalyst support. Also the roles of aluminum salts and precipitating agents on the specific surface area and compressive strength of alumina catalyst support were investigated. In addition, various additives and common methods in the increasing surface area, compressive strength and adjusting the porosity and pore size are used in this study. The results show that using caustic soda as precipitating agent and aluminum chloride salt yields catalyst supports with the best compressive strength. Also, using aluminum nitrate and ammonia as precipitating agent produced alumina catalyst support with the highest specific surface area.
Rocznik
Strony
35--40
Opis fizyczny
Bibliogr. 46 poz., rys., tab.
Twórcy
  • Deputy of Planning and Technology, Iran Alumina Complex, Jajarm, Iran
autor
  • Iran University of Science and Technology, Department of Chemical, Oil and Gas Engineering, P.O. Box: 16765-163, Teheran, Iran
  • Deputy of Planning and Technology, Iran Alumina Complex, Jajarm, Iran
autor
  • Iran University of Science and Technology, Department of Chemical, Oil and Gas Engineering, P.O. Box: 16765-163, Teheran, Iran
  • Iran University of Science and Technology, Department of Chemical, Oil and Gas Engineering, P.O. Box: 16765-163, Teheran, Iran
Bibliografia
  • 1. Trueba, M. & Trasatti, S.P. (2005). γ-Alumina as a Support for Catalysts: A Review of Fundamental Aspects, Eur. J. Inorg. Chem. 2005, 3393–3403. DOI: 10.1002/ejic.200500348.
  • 2. Faure, R., Rossignol, F., Chartier, T., Bonhomme, C., Getchegoyen, A., Del Gallo, P. & Gary, D. (2010). Alumina foam catalyst supports for industrial steam reforming processes, J. Eurp. Cer. Soc. 31, 303–312. DOI: 10.1016/j.jeurceramsoc.2010.10.009.
  • 3. Mcfarlane, A.R., Silverwood, I.P., Norris, E.L., Ormerod, R.M., Frost, C.D., Parker, S.F. & Lennon, D. (2013). The application of inelastic neutron scattering to investigate the steam reforming of methane over an alumina-supported nickel catalyst, J. Chem. Physics 427, 16577–16589. DOI: 10.1016/j.chemphys.2013.10.012.
  • 4. Nakano, K., Ali, S.A., Kim, H.J., Kim, T., Alhooshani, K., Park, J.I. & Mochida, I. (2013). Deep desulfurization of gas oil over NiMoS catalysts supported on alumina coated USY-zeolite, J. Fuel Proc. Technol. 116, 44–51. DOI: 10.1016/j.fuproc.2013.04.012.
  • 5. Antoniak, K., Kowalik, P., Próchniak, W., Konkol, M., Wach, A., Kuśtrowski, P. & Ryczkowski, J. (2013). Effect of flash calcined alumina support and potassium doping on the activity of Co–Mo catalysts in sour gas shift process, J. Appl. Catal. 423, 114–120. DOI: 10.1016/j.apcata.2012.02.028.
  • 6. Rui, Z., Chen, C., Lu, Y. & Ji, H. (2014). Anodic Alumina Supported Pt Catalyst for Total Oxidation of Trace Toluene, Chinese. J. Chem. Eng. 22, 882–887. DOI: 10.1016/j.cjche.2014.06.011.
  • 7. Valdez, R., Pawelec, B., Quintana, J.M. & Olivas, A. (2012). Effect of the acidity of alumina over Pt, Pd, and Pt–Pd (1:1) based catalysts for 2-propanol dehydration reactions. J. Fuel 105, 688–694. DOI: 10.1016/j.fuel.2012.10.047.
  • 8. Persson, K., Thevenin, P.O., Jansson, K., Agrell, J., Järås, S.G. & Pettersson, L.J. (2003). Preparation of alumina-supported palladium catalysts for complete oxidation of methane J. Appl. Catal. 249, 165–174. DOI: 10.1016/S0926-860X(03)00193-5.
  • 9. Banga, Y., Hana, S.J., Seob, J.G., Youna, M.H., Songa, J.H. & Songa, I.K. (2012). Hydrogen production by steam reforming of liquefied natural gas (LNG) over ordered mesoporous nickel–alumina catalyst, Int. J. Hydrogen Energy.38, 17967–17977. DOI: 10.1016/j.ijhydene.2013.05.029.
  • 10. Ganley, J.C., Riechmann, K.L., Seebauer, E.G. & Masel, R.I. (2004). Porous anodic alumina optimized as a catalyst support for microreactors, J. Catal. 227, 26–32. DOI: 10.1016/j.jcat.2004.06.016.
  • 11. Yun, S.J. & Seo, Y. (2013). Removal of bacteria and odor gas by an alumina support catalyst and negative air ions. J. Aerosol Sci. 58, 33–40. DOI: 10.1016/j.jaerosci.2012.12.006.
  • 12. Rodrigues, R., Isoda, N., Gonçalves, M., Figueiredo, F.C.A., Mandelli, D. & Carvalho, W.A. (2012). Effect of niobia and alumina as support for Pt catalysts in the hydrogenolysis of glycerol. Chem. Eng. J. 198–199, 457–467. DOI: 10.1016/j.cej.2012.06.002.
  • 13. Garg, A.K. (1996). Firing sol-gel alumina particles, International publication number, Appl. WO1996032226A2.
  • 14. Wakabayashi, M., Ono, T., Togari, O. & Nakamura, M. (1981). Process for the production of alumina suiTable for use as a catalyst carrier, United States Patent, Appl. US4248852 A.
  • 15. Crişan, M., Zaharescu, M., Durga, Kumari, V., Subrahmanyam, M., Crişan, D., Drăgan, N., Răileanu, M., Jitianu, M., Usu, R.A., Sadanandam, G. & Krishna Reddy, J. (2011). Sol–gel based alumina powders with catalytic applications, J. Appl. Surf. Sci. 258, 448–455. DOI: 10.1016/j.apsusc.2011.08.104.
  • 16. Ginestra, J.M., Ackerman, R.C. & Michel, C.G. (2006). Alumina having bimodal pore structure, catalysts made thereform and process using same, United States Patent, Appl. US6984310 B2.
  • 17. Becker, L.W. & Lukas, J.B. (1989). Manufacture and use of polymer modified aluminum hydroxide and basic aluminum sulfate, United States Patent, Appl. US4826606 A.
  • 18. Bloc, J. & Ville, R. (1987). Dispersible alpha alumina monohydrate having increased viscosifying properties, United States Patent, Appl. US4584108 A.
  • 19. Papayannakos, N.G., Thanos, A.M. & Kaloidas, Y.E. (1993). Effect of seeding during precursor preparation on the pore structure of alumina catalyst supports, J. Microporous Mater. 1, 423–430. DOI: 10.1016/0927-6513(93)80036-T.
  • 20. Da Ros, S., Barbosa-Coutinho, E., Schwaab, M., Calsavara, V. & Fernandes-Machado, N.R.C. (2013). Modeling the effects of calcination conditions on the physical and chemical properties of transition alumina catalysts, J. Mater. Charact. 80, 50–61. DOI: 10.1016/j.matchar.2013.03.005.
  • 21. Oberlander, K. (1984). Applied Industrial Catalysis, Academic Press, New York, 63.
  • 22. Wefers, K. (1990). Alumina Chemicals: Science and Technology Handbook, Edited by L.D. Hart and E. Lense, The American Ceramic Society, Westerville, Ohio, 13.
  • 23. Ray, J.C., You, K.S., Ahn, J.W. & Ahn, W.S. (2007). Mesoporous alumina (I): Comparison of synthesis schemes using anionic, cationic, and non-ionic surfactants. Micropor. Mesopor. Mater. 100, 183–190. DOI: 10.1016/j.micromeso.2006.10.036.
  • 24. Čejka, J., Žilková, N., Rathouský, J. & Zukal, A. (2001). Nitrogen adsorption study of organised mesoporous alumina. Phys. Chem. Chem. Phys. 3, 5076–5081. DOI: 10.1039/B105603B.
  • 25. Čejka, J., Veselá, L., Rathouský, J. & Zukal, A. (2002). Adsorption of nitrogen on organized mesoporous alumina. Stud. Surf. Sci. Catal. 141, 429–436. DOI: 10.1016/S0167-2991(02)80572-9.
  • 26. Kim, Y., Kim. C., Kim. P. & Yi, J. (2005). Effect of preparation conditions on the phase transformation of mesoporous alumina. J. Non-Crystalline Sol. 351, 550–556. DOI: 10.1016/j.jnoncrysol.2005.01.009.
  • 27. Valange, S., Guth, J.L., Kolenda, F., Lacombe, S. & Gabelica, Z. (2000). Synthesis strategies leading to surfactant-assisted aluminas with controlled mesoporosity in aqueous media. Micropor. Mesopor. Mater 35–36, 597–607. DOI: 10.1016/S1387-1811(99)00253-X.
  • 28. Xu, B., Xiao, T., Yan, Z., Sun, X., Sloan, J., González-Cortés, S.L., Alshahrani, F. & Green, M.L.H. (2006). Synthesis of mesoporous alumina with highly thermal stability using glucose template in aqueous system. Micropor. Mesopor. Mater 91, 293–295. DOI: 10.1016/j.micromeso.2005.12.007.
  • 29. González-Peña, V., Márquez-Alvarez, C., Sastre, E. & Pérez-Pariente, J. (2001). Improved Thermal Stability of Mesoporous Alumina Support of Catalysts for the Isomerization of Light Paraffins. Stud. Surf. Sci. Catal. 135, 1072–1079. DOI: 10.1016/S0167-2991(01)81400-2.
  • 30. Acosta, S., Ayral, A., Guizard, C. & Cot, L. (1996). Synthesis of alumina gels in amphiphilic media. J. Sol-Gel. Sci. Technol. 8, 195–199. DOI: 10.1007/BF02436840.
  • 31. Zhang, Z. & Pinnavaia, Mesostructured, T.J. (2002). γ-Al2O3 with a Lathlike Framework Morphology. J. Am. Chem. Soc. 124, 12294–12301. DOI: 10.1021/ja0208299.
  • 32. Vaudry, F., Khodabandeh, S. & Davis, M.E. (1996). Synthesis of pure alumina mesoporous materials. Chem. Mater. 8, 1451–1464. DOI: 10.1021/cm9600337.
  • 33. González-Peña, V., Márquez-Alvarez, C., Sastre, E. & Pérez-Pariente, J. (2002). Synthesis of ordered mesoporous and microporous aluminas: strategies for tailoring texture and aluminum coordination. Stud. Surf. Sci. Catal. 142, 1283–1290. DOI: 10.1016/S0167-2991(02)80291-9.
  • 34. González-Peña, V., Márquez-Alvarez, C., Díaz, I., Grande, M., Blasco, T. & Pérez-Pariente, J. (2005). Sol-gel synthesis of mesostructured aluminas from chemically modified aluminum sec-butoxide using non-ionic surfactant templating. Micropor. Mesopor. Mater. 80, 173–182. DOI: 10.1016/j.micromeso.2004.12.011.
  • 35. Deng, W., Bodart, P., Pruski, M. & Shanks, B.H. (2002). Characterization of mesoporous alumina molecular sievessyn-thesized by nonionic templating. Micropor. Mesopor.Mater. 52, 169–177. DOI: 10.1016/S1387-1811(02)00315-3.
  • 36. Shan, Z., Jansen, J.C., Zhou, W. & Maschmeyer, T. (2003). Al-TUD-1, sTable mesoporous aluminas with high surface areas. Appl. Catal. A: General 254, 339–343. DOI: 10.1016/S0926-860X(03)00480-0.
  • 37. Li, W.C., Lu, A.H., Schmidt, W. & Schüth, F. (2005). High surface area, mesoporous, glassy alumina with a controllable pore size by nanocasting from carbon aerogels. Chem.-A Eur. J. 11, 1658–1664. DOI: 10.1002/chem.200400776.
  • 38. Dey, S.(2014). Synthesis and Application of γ-Alumina Nanopowders, National Institute of Technology, Rourkela, India, 1–17.
  • 39. Liu, C., Liu, Y., Ma, Q. & He, H. (2010). Mesoporous transition alumina with uniform pore structure synthesized by alumisol spray pyrolysis, Chem. Eng. J. 163, 133–142. DOI: 10.1016/j.cej.2010.07.046.
  • 40. Siriwardane, U., Seetala, N.V., Vegesna, N.S., Vudarapu, S. & Luurtsema, K. (2006). Comparison of Fe/Co/Cu metal loading in mesoporous γ-alumina prepared by three sol-gel methods, Submitted to Appl. Catal.: A General, 17.
  • 41. Zhu, H.Y., Riches, J.D. & Barry, J.C. (2002). gamma-alumina nanofibers prepared from aluminum hydrate with poly(ethylene oxide) surfactant. Chem. Mater, 14, 2086–2093. DOI: 10.1021/cm010736a.
  • 42. González-Peña, V., Díaz, I., Márquez-Alvarez, C., Sastre, E. & Pérez-Pariente, J. (2001). Thermally sTable mesoporous alumina synthesized with non-ionic surfactants in the presence of amines. Micropor. Mesopor. Mater. 44, 203–210. DOI: 10.1016/S1387-1811(01)00185-8.
  • 43. Boissière, C., Nicole, L., Gervais, C., Babonneau, F., Antonietti, M., Amenitsch, H., Sanchez, C. & Grosso, D. (2006). Nanocrystalline mesoporous gamma-alumina powders “UPMC1 material” gathers thermal and chemical stability with high surface area, Chem. Mater. 18, 5238–5243. DOI: 10.1021/cm061489j.
  • 44. Liu, X., Wei, Y., Jin, D. & Shih, W.H. (2000). Synthesis of mesoporous aluminum oxide with aluminum alkoxide and tartaric acid. Mater. Lett. 42, 143–149. DOI: 10.1016/S0167-577X(99)00173-1.
  • 45. Ren, T.Z., Yuan, Z.Y. & Su, B.L. (2004). Microwave-assisted preparation of hierarchical mesoporous-macroporous-boehmite AlOOH and gamma-Al2O3. Langmuir 20, 1531–1534. DOI: 10.1021/la0361767.
  • 46. Yada, M., Hiyoshi, H., Ohe, K., Machida, M. & Kijima, T. (1997). Synthesis of aluminum-based surfactant mesophases morphologically controlled through a layer to hexagonal transition. Inorg. Chem. 36, 5565–5569. DOI: 10.1021/ic970292d.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e5423372-4899-4343-a3b8-bf05d91827bd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.