PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Heating value of thermally treated wood

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Common ash (Fraxinus excelsior L.) wood was heat treated in an oven at the temperatures of 180°C, and 200°C under atmospheric pressure in the presence of air for 3, 6, 9, 12 hours, and the changes in higher heating value (HHV) of wood were studied. For untreated ash wood the value 19.51 MJ·kg-1 was determined. Thermal treatment considerably increased the HHV of wood. The highest value was measured in sample that was thermally treated for 6 h at the temperature of 200°C. In this sample the value 20.78 MJ·kg-1 was determined. Changes in HHV are a consequence of chemical changes in wood during treatment. Strong positive correlation between HHV and the ratio of the sum of lignin and extractives content to holocellulose content was observed.
Rocznik
Strony
35--46
Opis fizyczny
Bibliogr. 43 poz., rys., tab.
Twórcy
  • Faculty of Wood Sciences and Technology, Technical University in Zvolen, Slovakia
  • Faculty of Wood Sciences and Technology, Technical University in Zvolen, Slovakia
Bibliografia
  • Andor T., Lagaňa R. [2018]: Selected properties of thermally treated ash wood. Acta Facultatis Xylologiae Zvolen 60 [1]: 51-60. DOI: 10.17423/afx.2018.60.1.06
  • Baeza J., Freer J. [2001]. Chemical characterization of wood and its components. In: Hon, D.N.-S., Shiraishi, N. (Eds.). Wood and cellulosic chemistry, second ed. Marcel Dekker, Inc., New York, NY, 275-384
  • Bubeníková T., Luptáková J., Kačíková D., Kačík F. [2018]: Characterization of macromolecular traits of lignin from heat treated spruce wood by size exclusion chromatography. Acta Facultatis Xylologiae Zvolen 60 [2]: 33-42. DOI: 10.17423/afx.2018.60.2.03
  • Čabalová I., Kačík F., Lagaňa R., Výbohová E., Bubeníková T., Čaňová I., Ďurkovič J. [2018]: Effect of thermal treatment on the chemical, physical, and mechanical properties of pedunculate oak (Quercus robur L.) wood. BioResources 13 [1]: 157-170
  • Da Silva M.R., Machado G.D.O., Brito J.O., Calil Junior C. [2013]: Strength and stiffness of thermally rectified eucalyptus wood under compression. Materials Research − Ibero-American Journal of Materials 16 [5]: 1077-1083. DOI: 10.1590/S1516-14392013005000086
  • De Moura L.F., Brito J.O., Da Silva F.G. [2012]: Effect of thermal treatment on the chemical characteristics of wood from Eucalyptus grandis W. Hill ex Maiden under different atmospheric conditions. Cerne 18 [3]: 449-455. DOI: 10.1590/S0104-77602012000300012
  • Demirbas A. [2003]: Relationships between heating value and lignin, fixed carbon, and volatile material contents of shells from biomass products. Energy Sources 25 [7]: 629-635. DOI: 10.1080/00908310390212336
  • Dzurenda L., Pňakovič Ľ. [2016]: Influence of the burning temperature of the non-volatile combustible content of wood and bark of plantation-grown, fast-growing tree species upon ash production, and its properties in terms of fusibility. BioResources 11 [3]: 6464-6476. DOI: 10.15376/biores.11.3.6464-6476
  • Dzurenda L., Ridzik L., Dzurenda M. [2013]: Ash of biofuels – Green wood chips made of dendromass from willows and poplars grown on plantations. Acta Facultatis Xylologiae 55 [1]: 111-118
  • Esteves B.M., Pereira H.M. [2009]: Wood modification by heat treatment: A review. BioResources 4 [1]: 370-404. DOI: 10.15376/biores.4.1.0370-0404
  • Esteves B., Velez Marques A., Domingos I., Pereira, H. [2013]: Chemical changes of heat treated pine and eucalypt wood monitored by FTIR. Maderas. Ciencia y Tecnologia 15 [2]: 245-258. DOI: 10.4067/S0718-221X2013005000020
  • Fengel D., Wegener G. [1984]: Wood: chemistry, ultrastructure, reaktions. Walter de Gruyter, Berlin
  • Fuwape J.A. [1990]: Effect of extractives on heating value of Gmelina arborea. Journal of Tropical Forest Science 4 [4]: 281-285
  • Geffertová J. [2009]: Spaľovacie teplo hydrolyzovaneho brezoveho dreva. Acta Facultatis Xylologiae 51 [2]: 63−69
  • Geffertová J., Geffert A. [2011]: Vŕba Salix viminalis – klon ULV. Časť 3: energeticky obsah hlavnych zložiek dreva (Willow Salix viminalis - ULV clone. Part 3: Energy content of the major constituents of wood). Proceedings of: Selected processes at the wood processing: IX. international symposium, 7-9 September 2011. Šturovo: 172-177
  • Geffertová J., Geffert A. [2013]: Zmeny smrekoveho dreva vplyvom termickeho posobenia. (Changes in spruce wood due to thermal treatment). Proceedings of: Selected processes at the wood processing: X. international symposium, 11-13 September 2013. Ružomberok: 220-229
  • González-Pena M.M., Curling S.F., Hale, M.D.C. [2009]: On the effect of heat on the chemical composition and dimensions of thermally-modified wood. Polymer Degradation and Stability 94 [12]: 2184-2193. DOI: 10.1016/j.polymdegradstab.2009.09.003
  • Hill C. [2006]. Wood modification. Chemical, thermal and other processes. John Wiley and Sons, Chichester
  • Hon D.N.S., Shiraishi N. [2001]: Wood and cellulosic chemistry. Marcel Dekker, New York
  • Kačík F., Šmíra P., Kačíková D., Veľková V., Nasswettrová A., Vacek, V. [2015]: Chemical alterations of pine wood saccharides during heat sterilisation. Carbohydrate polymers 117: 681-686
  • Kačíková D., Bubeníková T., Kačík F., Veľková V., Eštoková A., Ragan B. [2017]: Comparison of thermal degradation course of selected wood species. JTACC+V4: 1st Journal of thermal analysis and calorimetry conference and 6th V4 (Joint Czech-Hungarian-Polish-Slovakian) thermoanalytical conference: 241-242
  • Kára J., Srámek V., Hutla P., Stejskal F., Kopická A. [1997]. Využiti biomasy pro energeticke učely (Biomass use for energy purposes). CEA, Praha
  • Krzysik F. [1975]: Nauka o Drewnie (Wood science), Państwowe Wydawnictwo Naukowe, Warszawa
  • Kučerová V., Lagaňa R., Výbohová E., Hýrošová T. [2016]: The effect of chemical changes during heat treatment on the color and mechanical properties of fir wood. BioResources 11 [4]: 9079-9094. DOI: 10.15376/biores.11.4.9079-9094
  • Kúdela J., Andor T. [2018]: Beech wood discoloration induced with specific modes of thermal treatment. Annals of Warsaw University of Life Sciences – SGGW. Forestry and Wood Technology 103: 64-69
  • Nuopponen M., Vuorinen T., Jamsa S., Viitaniemi P. [2004]: Thermal modifications in softwood studied by FTIR and UV resonance Raman spectroscopies. Journal of Wood Chemistry and Technology 24 [1]: 13-26. DOI: 10.1081/WCT-120035941
  • Park S., Baker J.O., Himmel M.E., Parilla P.A., Johnson D.K. [2010]: Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulose performance. Biotechnology for Biofuels 3 [10]: 1-10
  • Pelaez-Samaniego M.R., Yadama V., Garcia-Perez M., Lowell E., McDonald A.G. [2014]: Effect of temperature during wood torrefaction on the formation of lignin liquid intermediates. Journal of Analytical and Applied Pyrolysis 109: 222-233. DOI: 10.1016/j.jaap.2014.06.008
  • Poletto M., Zattera A.J., Forte M.M.C., Santana R.M.C. [2012]: Thermal decomposition of wood: Influence of wood components and cellulose crystallite size. Bioresource Technology 109: 148-153
  • Porankiewicz B., Tylman M., Wieczorek D., Bocho-Janiszewska A., Klimaszewska E., Wieloch G. [2016]: The combustive heat of thirteen deciduous wood species. BioResources 11 [2]: 4402-4414.
  • Santos R. B., Capanema E. A., Balakshin M. Y., Chang H., Jameel H. [2012]: Lignin structural variation in hardwood species. Journal of Agricultural and Food Chemistry 60: 4923-4930. DOI: 10.1021/jf301276a
  • Severo E.T.D., Calonego F.W., Sansígolo C.A., Bond B. [2016]: Changes in the chemical composition and decay resistance of thermally-modified Hevea brasiliensis wood. PLOS One 11 [3]: e0151353. DOI: 10.1371/journal.pone.0151353
  • Telmo C., Lousada J. [2011]: The explained variation by lignin and extractive contents on higher heating value of wood. Biomass and bioenergy 35: 1663-1667
  • Tillman D.A. [1978]. Wood as an energy resource. Academie Press, New York
  • Tumen I., Aydemir D., Gunduz G., Uner B., Cetin H. [2010]: Changes in the chemical structure of thermally treated wood. BioResources 5 [3]: 1936-1944. DOI: 10.15376/biores.5.3.1936-1944
  • Výbohová E., Kučerová, V., Andor, T., Balážová, Ž., Veľková, V. [2018]: The effect of heat treatment on the chemical composition of ash wood. BioResources 13 [4]: 8394-8408. DOI: 10.15376/ biores.13.4.8394-8408
  • Wang X., Wu Z., Fang L., Wei P., Fei B., Liu J. [2015]: Changes of chemical composition, crystallinity, and Fourier transform infrared spectra of Eucalypt pellita wood under different vacuum heat treatment temperatures. Forest Products Journal 65 [7-8]: 346-351. DOI: 10.13073/FPJ-D-13-00099
  • White R. [1987]. Effect of lignin content and extractives on the higher heating value of wood. Wood and Fiber Science [19] 4: 446–452
  • Wikberg H., Maunu S. L. [2004]: Characterization of thermally modified hard- and softwoods by C-13 CPMAS NMR. Carbohydrate Polymers 58 [4]: 461-466. DOI: 10.1016/j.carbpol.2004.08.008
  • Wise L.E., Murphy M., Addieco A.A. [1946]: Chlorite holocellulose, its fractionation and bearing on summative wood analysis and on studies on the hemicelluloses. Paper Trade Journal 122 [3]: 35-43
  • List of standards
  • ASTM D1106-96:2013 Standard test method for acid-insoluble lignin in wood
  • ASTM D1107-96:2013 Standard test method for ethanol-toluene solubility of wood
  • STN ISO 1928:2003-07 Tuhe paliva. Stanovenie spalneho tepla a vypočet vyhrevnosti (Solid fuels. Determination of combustion heat and calculation of calorific value)
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e541e827-afd3-46cc-b099-812b2d57b2e6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.