Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
Changes in plants under the influence of a variety of chemical and physical factors are reflected in metabolomic changes. To date, there are very few methods that would allow studying metabolic changes occurring in single cells. Spectroscopic methods especially combined with the chemometrics methods are a very good tool to investigate such changes in metabolomics. Tracking changes in plants is of particular importance in industry, especially when studying how the use of fertilizers affects plants. In this paper, we present preliminary research as concept of proof to examine whether the use of FTIR (Fourier Transform Infrared Spectroscopy) helps to monitor the changes in the metabolomic profile of the plants. For preliminary research, four species of cereals and cuckooflower were used. In this step, it was possible to verify the differences in metabolites that are produced by plants belonging to different families. Then one species of grain was selected and subjected to eleven different physical and chemical factors. Next, the research was expanded to determine the optimal concentration of hydrogen peroxide. FTIR spectra of leaves and extracts of the plants were obtained for all experimental groups and then analyzed with the use of chemometric methods: HCA (Hierarchical Component Analysis) and PCA (Principal Component Analysis). Those methods were used to help in the interpretation of metabolic changes resulting in the plant in response to external factors.
Czasopismo
Rocznik
Tom
Strony
41--75
Opis fizyczny
Bibliogr. 27 poz., rys., tab., wykr.
Twórcy
autor
- Jagiellonian University, Faculty of Chemistry, Gronostajowa 2, 30-387 Krakow, Poland
autor
- University of Applied Sciences in Tarnow, Faculty of Mathematics and Natural Sciences, Department of Chemistry, Mickiewicza 8, 33-100 Tarnów, Poland
Bibliografia
- [1] Gidman E, Goodacre R, Emmett B, Smith AR, Gwynn- Jones D. Investigating plant-plant interference by metabolic fingerprinting. Phytochemistry. 2003;63(6):705–710. https://doi.org/10.1016/S0031-9422(03)00288-7.
- [2] Gumiński S. Ogólna fizjologia roślin. Ed. 2. Warszawa: Państwowe Wydawnictwo Naukowe; 1983.
- [3] Fukusaki E, Kobayashi A. Plant metabolomics: Potential for practical operation. Journal of Bioscience and Bioengineering. 2005;100(4):347–354. https://dx.doi.org/10.1263/jbb.100.347.
- [4] Shulaev V, Cortes D, Miller G, Mittler R. Metabolomics for plant stress response. Physiologia Plantarum. 2008;132(2):199–208. https://doi.org/10.1111/j.1399-3054.2007.01025.x.
- [5] Corlett RT. Plant diversity in a changing world: Status, trends, and conservation needs. Plant Diversity. 2016;38(1):10–16. https://doi.org/10.1016/j.pld.2016.01.001.
- [6] Obata T. Metabolons in plant primary and secondary metabolism. Phytochemistry Reviews. 2019;18(6):1483–1507. https://doi.org/10.1007/s11101-019-09619-x.
- [7] Hounsome N, Hounsome B, Tomos D, Edwards-Jones G. Plant metabolites and nutritional quality of vegetables. Journal of Food Science. 2008;73(4):48–65. https://doi.org/10.1111/j.1750-3841.2008.00716.x.
- [8] Czerwiński W. Fizjologia roślin. Ed. 3. Warszawa: Państwowe Wydawnictwo Naukowe; 1978.
- [9] Jia X, Wang W, Chen Z, He Y, Liu J. Concentrations of secondary metabolites in tissues and root exudates of wheat seedlings changed under elevated atmospheric CO₂ and cadmium-contaminated soils. Environmental and Experimental Botany. 2014;107:134–143. http://dx.doi.org/10.1016/j.envexpbot.2014.06.005.
- [10] Dunn WB, Ellis DI. Metabolomics: Current analytical platforms and methodologies. TrAC Trends in Analytical Chemistry. 2005;24(4):285–294. https://doi.org/10.1016/j.trac.2004.11.02.
- [11] Ellis DI, Harrigan GG, Goodacre R. Metabolic fingerprinting with Fourier transform infrared spectroscopy. In: Harrigan GG, Goodacre R, editors. Metabolic Profiling: Its Role in Biomarker Discovery and Gene Function Analysis. Boston, MA: Springer; 2003; p. 111–124. https:// doi.org/10.1007/978-1-4615-0333-0_7.
- [12] O’Gorman A. Metabolic Profiling and Fingerprinting for the Detection and Discrimination of Mechanical Damage in Mushrooms (Agaricus bisporus ) during Storage. [doctoral thesis]. Dublin: Technological University Dublin; 2010. https://doi.org/10.21427/D7DK5P.
- [13] Zuppinger-Dingley D, Flynn DFB, Brandl H, Schmid B. Selection in monoculture vs. mixture alters plant metabolic fingerprints. Journal of Plant Ecology. 2014;8(5):549–557. https://doi.org/10.1093/jpe/rtu043.
- [14] Johnson HE, Broadhurst D, Goodacre R, Smith AR. Metabolic fingerprinting of salt-stressed tomatoes. Phytochemistry. 2003;62(6):919–928. https://doi.org/10.1016/S0031-9422(02)00722-7.
- [15] Yunitasari N, Swasono RT, Pranowo HD, Raharjo TJ. Phytochemical screening and metabolomic approach based on Fourier transform infrared (FTIR): Identification of α-amylase inhibitor metabolites in Vernonia amygdalina leaves. Journal of Saudi Chemical Society. 2022;26(6):101540. https://doi.org/10.1016/j.jscs.2022.101540.
- [16] Sahoo MR, Umashankara MS. FTIR based metabolomics profiling and fingerprinting of some medicinal plants: An attempt to develop an approach for quality control and standardization of herbal materials. Pharmacognosy Research. 2023;15(1):163–167. https://doi. org/10.5530/097484900288.
- [17] Wijaya H, Yuliana ND, Wijaya CH, Nasrullah N. Classification of Trigona spp bee propolis from four regions in Indonesia using FTIR metabolomics approach. In: 13th ASEAN Food Conference, 9–11 September 2013, Singapore “Meeting Future Food Demands: Security and Sustainability”. Singapore; 2013.
- [18] Khalid Hussain, Zhari Ismail, Amirin Sadikun PI. Evaluation of metabolic changes in fruit of piper sarmentosum in various seasons by metabolomics using Fourier Transform Infrared (FTIR) spectroscopy. International Journal of Pharmaceutical and Clinical Research. 2009;1(2):68–71. Available from: https://www.myresearchjournals.com/index.php/IJPCR/article/view/5651.
- [19] Olko A, Kujawska M. Podwójna rola H₂O₂ w odpowiedzi roślin na działanie warunków stresowych. Kosmos. 2011;60(1–2):161–71.
- [20] Hanson BA. ChemoSpec: Exploratory Chemometrics for Spectroscopy. 2016. [Internet]. Available from: github.com/bryanhanson/ChemoSpec.
- [21] Stuart BH. Infrared Spectroscopy: Fundamentals and Applications. Chichester: Wiley; 2004. http://doi.wiley.com/10.1002/0470011149.
- [22] Geethu MG, Suchithra PS, Kavitha CH, Aswathy JM, Babu D, Murugan K. Fourier-transform infrared spectroscopy analysis of different solvent extracts of water hyacinth (Eichhornia crassipes mart solms.) an allelopathic approach. World Journal of Pharmacy and Pharmaceutical Sciences. 2014;3(6):1256–1266.
- [23] Schmitt J, Flemming H-C. FTIR-spectroscopy in microbial and material analysis. International Biodeterioration and Biodegradation. 1998;41(1):1–11. https://doi.org/10.1016/S0964-8305(98)80002-4.
- [24] Preston LJ, Izawa MRM, Banerjee NR. Infrared spectroscopic characterization of organic matter associated with microbial bioalteration textures in basaltic glass. Astrobiology. 2011;11(7):585–599. http://doi.org/10.1089/ast.2010.0604.
- [25] Baciu A, Ranga F, Fetea F, Zavoi S, Socaciu C. Fingerprinting Food supplements and their botanical ingredients by coupled UV/Vis/FTIR spectrometry. Bulletin UASVM Food Science and Technology. 2013;70(1):8–15. https:// doi.org/10.15835/buasvmcn-fst:9246.
- [26] Baranska M, Schulz H. Chapter 4: Determination of alkaloids through infrared and Raman spectroscopy. In: Cordell GA, editor. Alkaloids: Chemistry and Biology. Volume 67. Amsterdam–Boston: Elsevier/Academic Press; 2009. p. 217–255.
- [27] Wojtkowiak B, Chabanel M. Spektroskopia molekularna. Warszawa: Państwowe Wydawnictwo Naukowe; 1984
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e541b127-ec55-4e13-a787-ac0e7ebb22ea