PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Multi-criteria diagnostics of historic buildings with the use of 3D laser scanning (a case study)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The protection and use of historic buildings is a difficult and costly task. Most often, these objects are under conservatory protection and any interference in their structure requires appropriate consent. On the other hand, conducting construction works on historic buildings carries a high risk of their damage or even destruction. Therefore, proper prior diagnostics is an extremely important factor affecting the scope and manner of works to be conducted. The paper presents the use of 3D scanning to determine the deflection of the ceiling under the Column Hall of the historic Palace, the floor of which showed elasticity, recorded during changing service loads. After identifying the places with the greatest deflections, based on data from 3D laser scanning, test holes were made and wood samples from the ceiling were taken to perform moisture content and mycological tests. An endoscopic inspection camera was inserted into test holes, providing the basis for recognizing the structure of the ceiling, i.e. arrangement of layers as well as dimensions and spacing of ceiling beams. Strength calculations were made with the limit state method resulted in the determination of the maximum permissible service load on the ceiling. The presented course of action in diagnostics of the analysed historic building may be an example of a preliminary procedure to be taken before deciding on changes in the manner of use of historic buildings or the functionalities of their individual parts.
Rocznik
Strony
art. no. e140373
Opis fizyczny
Bibliogr. 54 poz., rys., tab.
Twórcy
  • Department of Construction and Geoengineering, Poznan University of Life Sciences, 60-637 Poznań, Poland
  • Department of Construction and Geoengineering, Poznan University of Life Sciences, 60-637 Poznań, Poland
autor
  • Institute of Building Engineering, Poznan University of Technology, Piotrowo 5, 60-965 Pozna´ n, Poland
  • Company owner, Poland
Bibliografia
  • [1] B. Nowogońska, “Consequences of Abandoning Renovation: Case Study – Neglected Industrial Heritage Building,” Sustainability, vol. 12, no. 16, p. 6441, 2020.
  • [2] B. Nowogońska, “Intensity of damage in the aging process of buildings,” Arch. Civ. Eng., vol. 66, no. 2, 2020.
  • [3] B. Nowogońska and J. Korentz, “Value of technical wear and costs of restoring performance characteristics to residential buildings,” Buildings, vol. 10, no. 1, p. 9, 2020.
  • [4] M. Lemmens, Ed., Geo-information: Technologies, Applications and the Environment. Dordrecht: Springer Netherlands, 2011.
  • [5] X. J. Cheng and W. Jin, “Study on reverse engineering of historical architecture based on 3D laser scanner,” in J. Phys. Conf. Ser., p. 160.
  • [6] J. Szolomicki, Ed., Application of 3D laser scanning to computer model of historic buildings, 2015.
  • [7] A. Skwirosz and K. Bojarowski, “The Inventory and Recording of Historic Buildings Using Laser Scanning and Spatial Systems,” in 2018 Baltic Geodetic Congress (BGC Geomatics), pp. 340–343.
  • [8] P. Gleń and K. Krupa, “The use of 3D scanning for the inventory of historical buildings on the example of the palace in Snopków,” Teka Komisji Architektury, Urbanistyki i Studiów Krajobrazowych, vol. 15, no. 2, pp. 73–78, 2019.
  • [9] T. Lipecki, “Geodetic and Architectural Inventory of the Historic Wooden Church of St. Szczepan in Mnichów (Poland) in Terms of Safety Assessment of the Geometric Condition of the Structure,” 2020.
  • [10] N. Lercari, “Monitoring earthen archaeological heritage using multi-temporal terrestrial laser scanning and surface change detection,” J. Cult. Heritage, vol. 39, pp. 152–165, 2019.
  • [11] R. Nowak, R. Orłowicz, and R. Rutkowski, “Use of TLS (Li-DAR) for building diagnostics with the example of a historic building in Karlino,” Buildings, vol. 10, no. 2, p. 24, 2020.
  • [12] W. Buczkowski, A. Szymczak-Graczyk, and Z. Walczak, “Experimental validation of numerical static calculations for a monolithic rectangular tank with walls of trapezoidal crosssection,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 65, no. 6, pp. 799–804, 2017.
  • [13] M. Bernat, A. Janowski, S. Rzepa, A. Sobieraj, and J. Szulwic, “Studies on the use of terrestrial laser scanning in the maintenance of buildings belonging to the cultural heritage,” 14th Geoconference on Informatics, Geoinformatics and Remote Sens., SGEM. ORG, Albena, Bulgaria, vol. 3, pp. 307–318, 2014.
  • [14] J. Liu, Q. Zhang, J.Wu, and Y. Zhao, “Dimensional accuracy and structural performance assessment of spatial structure components using 3D laser scanning,” Autom. Constr., vol. 96, pp. 324–336, 2018.
  • [15] J. Kwiatkowski,W. Anigacz, and D. Beben, “A case study on the noncontact inventory of the oldest european cast-iron bridge using terrestrial laser scanning and photogrammetric techniques,” Remote Sens., vol. 12, no. 17, p. 2745, 2020.
  • [16] A. Borkowski and G. Jóźków, “Accuracy assessment of building models created from laser scanning data,” International Archives of the Photogrammetry, Remote Sens., and Spatial Information Sciences, vol. 39, B3, 2012.
  • [17] P. Klapa, B. Mitka, and M. Zygmunt, “Study into point cloud geometric rigidity and accuracy of TLS-based identification of geometric bodies,” in IOP Conf. Ser.: Earth Environ. Sci, vol. 95, p. 32008, 2018.
  • [18] M. Zámečníková, A. Wieser, H. Woschitz, and C. Ressl, “Influence of surface reflectivity on reflectorless electronic distance measurement and terrestrial laser scanning,” J. Appl. Geod., vol. 8, no. 4, pp. 311–326, 2014.
  • [19] B. Schmitz, C. Holst, T. Medic, D. D. Lichti, and H. Kuhlmann, “How to efficiently determine the range precision of 3d terrestrial laser scanners,” Sensors, vol. 19, no. 6, p. 1466, 2019.
  • [20] P. Gleń and K. Krupa, “Comparative analysis of the inventory process using manual measurements and laser scanning,” Budownictwo i Architektura, vol. 18, no. 2, pp. 021–030, 2019.
  • [21] S. El-Omari and O. Moselhi, “Integrating 3D laser scanning and photogrammetry for progress measurement of construction work,” Autom. Constr., vol. 18, no. 1, pp. 1–9, 2008.
  • [22] G. Rocha, L. Mateus, J. Fernández, and V. Ferreira, “A scanto-BIM methodology applied to heritage buildings,” Heritage, vol. 3, no. 1, pp. 47–67, 2020.
  • [23] H. E.-D. Fawzy, “3D laser scanning and close-range photogrammetry for buildings documentation: A hybrid technique towards a better accuracy,” Alexandria Eng. J., vol. 58, no. 4, pp. 1191–1204, 2019.
  • [24] P. Grussenmeyer et al., “Recording approach of heritage sites based on merging point clouds from high resolution photogrammetry and terrestrial laser scanning,” Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci, vol. 39, pp. 553–558, 2012.
  • [25] F. Remondino, “Heritage recording and 3D modeling with photogrammetry and 3D scanning,” Remote Sens., vol. 3, no. 6, pp. 1104–1138, 2011.
  • [26] C. Sahin et al., “Producing 3D city model with the combined photogrammetric and laser scanner data in the example of Taksim Cumhuriyet square,” Optics Lasers Eng., vol. 50, no. 12, pp. 1844–1853, 2012.
  • [27] C. Biagini, P. Capone, V. Donato, and N. Facchini, “Towards the BIM implementation for historical building restoration sites,” Autom. Constr., vol. 71, pp. 74–86, 2016.
  • [28] L. Mahdjoubi, C. Moobela, and R. Laing, “Providing realestate services through the integration of 3D laser scanning and building information modelling,” Comput. Ind., vol. 64, no. 9, pp. 1272–1281, 2013.
  • [29] A. Osello, G. Lucibello, and F. Morgagni, “HBIM and virtual tools: A new chance to preserve architectural heritage,” Buildings, vol. 8, no. 1, p. 12, 2018.
  • [30] F.J. López, P.M. Lerones, J. Llamas, J. Gómez-García-Bermejo, and E. Zalama, “A review of heritage building information modeling (H-BIM),” Multimodal Technologies and Interaction, vol. 2, no. 2, p. 21, 2018.
  • [31] S. Bruno, M. de Fino, and F. Fatiguso, “Historic Building Information Modelling: performance assessment for diagnosisaided information modelling and management,” Autom. Constr., vol. 86, pp. 256–276, 2018.
  • [32] M. Andriasyan, J. Moyano, J. E. Nieto-Julián, and D. Antón, “From point cloud data to building information modelling: An automatic parametric workflow for heritage,” Remote Sens., vol. 12, no. 7, p. 1094, 2020.
  • [33] N. Kip and J. A. van Veen, “The dual role of microbes in corrosion,” The ISME J., vol. 9, no. 3, pp. 542–551, 2015.
  • [34] J. Singh, “Nature and extent of deterioration in buildings due to fungi 3,” Building Mycology, p. 30, 1994.
  • [35] J. D. Miller, “Fungi as contaminants in Indoor Air,” Atmos. Environ.,. Part A. General Topics, vol. 26, no. 12, pp. 2163–2172, 1992.
  • [36] K. Sterflinger, “Fungi: their role in deterioration of cultural heritage,” Fungal Biol., reviews, vol. 24, 1-2, pp. 47–55, 2010.
  • [37] A. Szymczak-Graczyk, I. Laks, B. Ksit, and M. Ratajczak, “Analysis of the Impact of Omitted Accidental Actions and the Method of Land Use on the Number of Construction Disasters (a Case Study of Poland),” Sustainability, vol. 13, no. 2, p. 618, 2021.
  • [38] Eurokod 5 – Projektowanie konstrukcji drewnianych – Część 1-1: Postanowienia ogólne – Reguły ogólne i reguły dotyczące budynków, PN-EN 1995-1-1:2010 Eurokod 5, PN-EN 1995-1-1:2010 Eurokod 5.
  • [39] G.L. Barron, The genera of Hyphomycetes from soil. University of Glasgow (United Kingdom), 1984.
  • [40] M.B. Ellis, “Dematiaceous hyphomycetes: 1,” Mycological papers, vol. 76, 1960.
  • [41] Konstrukcje z drewna i materiałów drewnopochodnych – Obliczenia statyczne i projektowanie – Materiały, PN-B-03150-01:1981, PN-B-03150-01:1981.
  • [42] E. T. Delegou, G. Mourgi, E. Tsilimantou, C. Ioannidis, and A. Moropoulou, “A multidisciplinary approach for historic buildings diagnosis: the case study of the Kaisariani monastery,” Heritage, vol. 2, no. 2, pp. 1211–1232, 2019.
  • [43] F. Ascione, F. Ceroni, R. F. de Masi, F. de’Rossi, and M. R. Pecce, “Historical buildings: Multidisciplinary approach to structural/energy diagnosis and performance assessment,” Appl. Energy, vol. 185, pp. 1517–1528, 2017.
  • [44] S. Fais, G. Casula, F. Cuccuru, P. Ligas, and M. G. Bianchi, “An innovative methodology for the non-destructive diagnosis of architectural elements of ancient historical buildings,” Sci. Rep., vol. 8, no. 1, pp. 1–11, 2018.
  • [45] P. B. Lourenço, “Computations on historic masonry structures,” Prog. Struct. Eng. Mater., vol. 4, no. 3, pp. 301–319, 2002.
  • [46] A. Iringová and R. Idunk, “Solution of fire protection in historic buildings,” Civ. Environ. Eng., vol. 12, no. 2, pp. 84–93, 2016.
  • [47] M. Gołdyn and T. Urban, “Failures of the Cast-Iron Columns of Historic Buildings—Case Studies,” Infrastructures, vol. 5, no. 9, p. 71, 2020.
  • [48] F. Bosché and E. Guenet, “Automating surface flatness control using terrestrial laser scanning and building information models,” Autom. Constr., vol. 44, pp. 212–226, 2014.
  • [49] B. Ksit and M. Gaczek, “Analytical meanders of selected systems for thermo-renovation of historical buildings,” in E3S Web of Conferences, vol. 49, p. 00062, 2018.
  • [50] G.A. de Vries, “Contribution to the knowledge of the genus Cladosporium Link ex Fr,” Contribution to the knowledge of the genus Cladosporium Link ex Fr, 1952.
  • [51] K.B. Raper and D. I. Fennell, “The genus Aspergillus,” The genus Aspergillus, 1965.
  • [52] K.B. Raper and C. Thom, “A manual of the Penicillia,” A manual of the Penicillia, 1949.
  • [53] Directive 2000/54/EC of the European Parliament and of the Councilof18 September 2000 on the protection of workers from risks r elated to exposure to biological agents at work. Official Journal of the European Communities, 17.10.2000, Directive 2000/54/EC, L 262/21-45, Directive 2000/54/EC.
  • [54] Rozporządzenie Ministra Zdrowia z dnia 22 kwietnia 2005 w sprawie szkodliwych czynników biologicznych dla zdrowia w środowisku pracy oraz ochrony zdrowia pracowników zawodowo narażonych na te czynniki, Dz. U z 2005 r. Nr 81, poz. 716, Dz. U z 2005 r. Nr 81, poz. 716.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e53dc8cd-4040-4a10-a4e4-d09ebc539bab
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.