PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Computerized screening of diabetic retinopathy employing blood vessel segmentation in retinal images

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Diabetic retinopathy is a severe sight threatening disease which causes blindness among working age people. This research work presents a retinal vessel segmentation technique, which can be used in computer based retinal image analysis. This proposed method could be used as a prescreening system for the early detection of diabetic retinopathy. The algorithm implemented in this work can be effectively used for detection and analysis of vascular structures in retinal images. The retinal blood vessel morphology helps to classify the severity and identify the successive stages of a number of diseases. The changes in retinal vessel diameter are one of the symptoms for diseases based on vascular pathology. The size of typical retinal vessel is a few pixels wide and it becomes critical and challenging to obtain precise measurements using computer based automatic analysis of retinal images. This method classifies each image pixel as vessel or non-vessel and thereby produces the segmentation of vasculature in retinal images. Retinal blood vessels are identified and segmented by making use of a multilayer perceptron neural network, for which the inputs are derived from three primary colour components of the image, i.e., red, green and blue. Back propagation algorithm which provides a proficient technique to change the weights in a feed-forward network is employed. The performance of this method was evaluated and tested using the retinal images from the DRIVE database and has obtained illustrative results. The measured accuracy of the proposed system was 95.03% for the segmentation algorithm tested on this database.
Twórcy
  • Department of Electronics and Communication Engineering, CSI Institute of Technology, Thovalai, Tamil Nadu, India
autor
  • Department of Electrical and Electronics Engineering, Mepco Schlenk Engineering College, Tamil Nadu, India
Bibliografia
  • [1] Mendonça AM, Campilho A. Segmentation of retinal blood vessels by combining the detection of centerlines and morphological reconstruction. IEEE Trans Med Imaging 2006;25(September (9)):1200–13.
  • [2] Soares JVB, Leandro JJG, Cesar Jr RM, Jelinek HF, Cree MJ. Retinal vessel segmentation using the 2-D Gabor wavelet and supervised classification. IEEE Trans Med Imaging 2006;25(September (9)):1214–22.
  • [3] Frame AJ, Undrill PE, Cree MJ, Olson JA, McHardy KC, Sharp PF, et al. A comparison of computer based classification methods applied to the detection of microaneurysms in ophthalmic fluorescein angiograms. Comput Biol Med 1998;28(3):225–38.
  • [4] Larsen M, Godt J, Larsen N, Lund-Andersen H, Sjølie AK, Agardh E, et al. Automated detection of fundus photographic red lesions in diabetic retinopathy. Invest Ophthalmol Vis Sci 2003;44(2):761–6.
  • [5] Oyster C. The human eye: structure and function. Sunderland, MA: Sinauer Associates; 1999.
  • [6] Hoover A, Goldbaum M. Locating the optic nerve in a retinal image using the fuzzy convergence of the blood vessels. IEEE Trans Med Imaging 2003;22(August (8)):951–8.
  • [7] Sinthanayothin C, Boyce JF, Cook HL, Williamson TH. Automated localization of the optic disc, fovea, and retinal blood vessels from digital color fundus images. Br J Ophthalmol 1999;83(8):902–10.
  • [8] Sinthanayothin C, Boyce JF, Williamson TH, Cook HL, Mensah E, Lal S, et al. Automated detection of diabetic retinopathy on digital fundus images. Diabetic Med 2002;19 (2):105–12.
  • [9] Vermeer KA, Vos FM, Lemij HG, Vossepoel AM. A model based method for retinal blood vessel detection. Comput Biol Med 2004;34:209–19.
  • [10] Chaudhuri S, Chateterjee S, Katz N, Nelson M, Goldbaum M. Detection of blood vessels in retinal images using two- dimensional matched filters. IEEE Trans Med Imaging 1989;8(September (3)):263–9.
  • [11] Chanwimaluang T, Fan G. An efficient algorithm for extraction of anatomical structures in retinal images. Proc ICIP; 2003. pp. 1193–6.
  • [12] Hoover A, Kouznetsova V, Goldbaum M. Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response. IEEE Trans Med Imaging 2000;19 (March (3)):203–11.
  • [13] Martinez-Perez ME, Hughes AD, Stanton AV, Thom SA, Bharath AA, Parker KH. Segmentation of retinal blood vessels based on the second directional derivative and region growing. Proc ICIP; 1999. pp. 173–6.
  • [14] Martinez-Perez ME, Hughes AD, Stanton AV, Thom SA, Bharath AA, Parker KH. Scale-space analysis for the characterization of retinal blood vessels. In: Taylor C, Colchester A, editors. Medical Image Computing and Computer-Assisted Intervention – MICCAI'99, vol. 16794, Lecture Notes Comput Sci. New York: Springer; 1999. pp. 90–7.
  • [15] Wang Y, Lee SC. A fast method for automated detection of blood vessels in retinal images. IEEE Comput Soc Proc Asilomar Conf; 1998. pp. 1700–4.
  • [16] Jiang X, Mojon D. Adaptive local thresholding by verification based multithreshold probing with application to vessel detection in retinal images. IEEE Trans Pattern Anal Mach Intell 2003;254(January (1)):131–7.
  • [17] Zana F, Klein J-C. Segmentation of vessel-like patterns using mathematical morphology and curvature evaluation. IEEE Trans Med Imaging 2001;11(July (7)):1111–9.
  • [18] Niemeijer M, Staal J, van Ginneken B, Loog M, Abràmoff MD. Comparative study of retinal vessel segmentation methods on a new publicly available database. In: Fitzpatrick M, Sonka M, editors. Proc SPIE Med Imag 5370. 2004. pp. 648–56.
  • [19] Staal J, Abramoff MD, Niemeijer M, Viergever MA, van Ginneken B. Ridge-based vessel segmentation in color images of the retina. IEEE Trans Med Imaging 2004;23(April (4)):501–9.
  • [20] Zhou L, Rzeszotarski MS, Singerman LJ, Chokreff JM. The detection and quantification of retinopathy using digital angiograms. IEEE Trans Med Imaging 1994;13 (December (4)):619–26.
  • [21] Tolias Y, Panas SM. A fuzzy vessel tracking algorithm for retinal images based on fuzzy clustering. IEEE Trans Med Imaging 1998;17(April (2)):263–73.
  • [22] Can A, Shen H, Turner JN, Tanenbaum HL, Roysam B. Rapid automated tracing and feature extraction from retinal fundus images using direct exploratory algorithms. IEEE Trans Inf Technol Biomed 1999;3(June (2)):125–38.
  • [23] Chutatape O, Zheng L, Krishnan SM. Retinal blood vessel detection and tracking by matched Gaussian and Kalman filters. Proc 20th Ann Int Conf IEEE Engineering in Medicine and Biology; 1998. pp. 3144–9.
  • [24] Fraz MM, Remagnino P, Hoppe A, Uyyanonvara B, Rudnicka AR, Owen CG, et al. Blood vessel segmentation methodologies in retinal images – a survey. Comput Methods Programs Biomed 2012;108(October (1)):407–33.
  • [25] Ho P-G. Image segmentation. InTech; 2011978-953-307-228- 9, Available: http://cdn.intechopen.com/pdfs/15371/InTech.
  • [26] Lee VS, Kingsley RM, Lee ET, Lu M, Russell D, Asal NR, et al. The diagnosis of diabetic retinopathy. Ophthalmoscopy versus fundus photography. Ophthalmology 1993;100: 1504–12.
  • [27] Research Section, Digital Retinal Image for Vessel Extraction (DRIVE) Database. Utrecht, The Netherlands: Univ Med Center Utrecht, Image Sci Inst; 2004, Available: http://www.isi.uu.nl/Research/Databases/DRIVE.
  • [28] Gonzalez RC, Woods RE. Digital image processing. Reading: Addison-Wesley; 1993, 229–37, 583–6.
  • [29] Toulson DL, Boyce JF. Segmentation of MR images using neural nets. Proc Br Machine Vision Conf; 1991. pp. 284–92.
  • [30] Toulson DL, Boyce JF. Segmentation of MR images using neural nets (expanded version). Image Vis Comput 1992;10:324–8.
  • [31] Lo SC, Freedman MT, Lin JS, Mun SK. Automatic lung nodule detection using profile matching and back-propagation neural network techniques. J Digit Imaging 1993;6:48–54.
  • [32] Astion ML, Wilding P. The application of backpropagation neural networks to problems in pathology and laboratory medicine. Arch Path Lab Med 1992;116:995–1001.
  • [33] Wu Y, Giger ML, Doi K, Vyborny CJ, Schmidt RA, Metz CE. Artificial neural networks in mammography: application to decision making in the diagnosis of breast cancer. Radiology 1993;187:81–7.
  • [34] Spenceley SE, Henson DB, Bull DR. Visual field analysis using artificial neural networks. Ophthal Physiol Opt 1994;14:239–48.
  • [35] Bowyer KW, Phillips PJ. Empirical evaluation techniques in computer vision. Piscataway, NJ: IEEE Press; 1998.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e53d89e8-2955-4c0d-9c21-289ad31c33b9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.