PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Cretaceous magmatic evolution in the Deylaman igneous complex, Alborz zone, Iran : change from extensional to compressional regime

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Deylaman igneous complex, as a part of the Late Cretaceous rock unit that lies behind the Paleogene Alborz magmatic arc, in the northern Alborz zone, is composed of basaltic sheet lavas alternating with the pelagic calcareous sediments, basaltic pillow lavas, felsic lavas and gabbroic-monzodioritic intrusions. The pelagic calcareous deposits contain microfossils representing the Santonian-Maastrichtian ages. Furthermore, petrographic textures such as the hyalomicrolitic texture and swallow-tail plagioclase crystals in the pillow lavas, and also segregation vesicles in the basaltic sheet lavas, imply high external (hydrostatic) pressures as the magma was extruded in a deep-water environment. The rock samples show both compositional bimodality and characteristic trends in the variation diagrams. Also, some geochemical characteristics imply that the basaltic lavas originated from the partial melting of an undepleted deep mantle source containing spinel lherzolite: the enrichment patterns of LREE/HREE ratios of the samples [(La/Yb)n = 3.93-4.16 for basaltic lavas and 10.92 for felsic lavas] lying between those characteristic of OIBs [(La/Yb)n = 12.92] and EMORBs [(La/Yb)n = 1.91]; similarities between the patterns of multi-element spider-diagrams; LILE bulges in the basaltic samples compared with those of OIBs. Moreover, the samples show influence from two geotectonic environments: supra-subduction zone (SSZ) settings and plume-type within-plate magmas. Therefore, because of the deep submarine environment inferred for the effusive volcanic eruptions in Santonian-Maastrichtian time, it seems that the Deylaman igneous complex evolved through two stages: first, a tensional regime in a supra-subduction zone (farther from the Mesozoic magmatic arc) and formation of an embryonic rift-related oceanic basin in the Late Jurassic-Early Cretaceous; secondly, a compressive regime in the Late Cretaceous-Early Paleocene and inland migration of the magmatic arc. Consequently, the Cretaceous magmatism can be interpreted as a prelude to the Eocene magmatic flare-up in the magmatic arcs of Iran.
Słowa kluczowe
Rocznik
Strony
757--770
Opis fizyczny
Bibliogr. 56 poz., fot., rys., tab., wykr.
Twórcy
  • Department of Geology, Faculty of Science, Imam Khomeini International University, Qazvin 34148-96818, Iran
  • Department of Geology, Faculty of Science, Imam Khomeini International University, Qazvin 34148-96818, Iran
  • Department of Geology, Islamic Azad University, Lahijan Branch, Lahijan, Iran
Bibliografia
  • 1. Agard, P., Omrani, J., Jolivet, L., Whitechurch, H., Vrielynck, B., Spakman, W., Monié, P., Meyer, B., Wortel, R., 2011. Zagros orogeny: a subduction-dominated process. Geological Magazine, 148: 692-725.
  • 2. Ajirlu, M., Moazzen, M., Hajialioghli, R., 2016. Tectonic evolution of the Zagros Orogen in the realm of the Neotethys between the Central Iran and Arabian Plates: an ophiolite perspective. Central European Geology, 59: 1-27.
  • 3. Alavi, M., 1996. Tectonostratigraphic synthesis and structural style of the Alborz Mountain system in Northern Iran. Journal of Geodynamics, 21: 1-33.
  • 4. Allahyari, Kh., Saccani, E., Pourmoafi, M., Beccaluva, L., Masoudi, F., 2010. Petrology of mantle peridotites and intrusive mafic rocks from the Kermanshah ophiolitic complex (Zagros belt, Iran): implications for the geodynamic evolution of the Neo-Tethyan oceanic branch between Arabia and Iran. Ofioliti, 35: 71-90.
  • 5. Allen, M.B., Blanc, E.J.P., Walker, R., Jackson, J., Talebian, M., Ghassemi, M.R., 2006. Contrasting styles of convergence in the Arabia-Eurasia collision: why escape tectonics does not occur in Iran. Geological Society of America Special Paper, 409: 579-589.
  • 6. Anderson, A.T., Swihart, G.H., Artioli, G., Geiger, C.A., 1984. Segregation vesicles, gas filter-pressing, and igneous differentiation. Journal of Geology, 92: 55-72.
  • 7. Annells, R.N., Arthurton, R.S., Bazely, R.A., Davis, R.G., 1975. Explanatory text of the Qazvin and Rasht quadrangles map (1:250 000). Geological Survey of Iran, No. E3, E4.
  • 8. Baharfiruzi, Kh., Shafeii, A.R., Azhdari, A., Karimi, H.R., 2003. Geological map of Javaherdeh quadrangle map (1:100 000 scale). Geological Survey of Iran.
  • 9. Berberian, M., King G.C.P., 1981. Towards a paleogeography and tectonic evolution of Iran. Canadian Journal of Earth Sciences, 18: 210-265.
  • 10. Boynton, W.V., 1984. Cosmochemistry of the rare earth elements: meteorite studies. In: Rare Earth Element Geochemistry (ed. P. Henderson): 63-114. Amsterdam, Elsevier.
  • 11. Caroff, M., Maury, R.C., Cotton, J., Clément J.P., 2000. Segregation structures and vapor-differentiated basaltic flows. Bulletin of Volcanology, 62: 87-171.
  • 12. Cas, R.A.F., Wright, J.V., 1988. Volcanic Successions: Modern and Ancient. Unwin Hyman, London.
  • 13. Chiu, H.Y., Chung, S.L., Zarrinkoub, M.H., Mohammadi, S.S., Khatib, M.M., Iizuka, Y., 2013. Zircon U-Pb age constraints from Iran on the magmatic evolution related to Neotethyan subduction and Zagros orogeny. Lithos, 162-163: 70-87.
  • 14. Condie, K.C., 1989. Geochemical changes in basalts and andesites across the Archean-Proterozoic boundary: identification and significance. Lithos, 23: 1-18.
  • 15. D'Orazio, M., Innocenti, F., Manetti, P., Haller, M.J., 2004. Cenozoic back-arc magmatism of the southern extra-Andean Patagonia (44°30'-52°S): a review of geochemical data and geodynamic interpretations. Revista de la Asociación Geológica Argentina, 59: 525-538.
  • 16. Doroozi, R., Vaccaro, C., Masoudi, F., Petrini, R., 2016. Cretaceous alkaline volcanism in south Marzanabad, northern central Alborz, Iran: Geochemistry and petrogenesis. Geoscience Frontiers, 7: 937-951.
  • 17. Ghazi, A.M., Pessagno, E.A., Hassanipak, A.A., Kariminia, S.M., Duncan, R.A., Babaie, H.A. 2003. Biostratigraphic zonation and 40Ar-39Ar ages for the Neotethyan Khoy ophiolite of NW Iran. Palaeogeography, Palaeoclimatology, Palaeoecology, 193: 311-323.
  • 18. Haghnazar, Sh., 2012. Petrology, geochemistry and tectonic setting of Javaherdasht Cretaceous gabbro in the north part of Alborz Mountains, East of Guilan, north of Iran: a part of ophiolite sequence or intra-continental rift? (in Farsi). Iranian Journal of Petrology, 10: 79-94.
  • 19. Haghnazar, Sh., Malakotian, S., 2009. Petrography and Geochemistry of the Javaherdasht basalts (east of Guilan Province): the investigation of the role of crystal fractionation and crustal contamination in the magmatic evolution (in Farsi). Iranian Journal of Crystallography and Mineralogy, 17: 253-266.
  • 20. Haghnazar, Sh., Malakotian, S., Allahyari, Kh., 2015. Tectono-magmatic setting of Cretaceous pillow basalts in the north part of the Alborz Mountains in east of Guilan province (north of Iran): a part of ophiolite sequence or intra-continental rift? (in Farsi). Geosciences, 24: 171-182.
  • 21. Haghnazar, Sh., Shafeie, Z., Sharghy, Z., 2016. Petrogenesis and tectonic setting of an basalt-trachyte-rhyolite suite in the Spili area (south of Siahkal), north of Iran: evidences of continental rift-related bimodal magmatism in Alborz (in Farsi). Iranian Journal of Petrology, 27: 43-60.
  • 22. Harker, A. 1909. The Natural History of Igneous Rocks. Methuen & Co., London.
  • 23. Hassanipak, A.A., Ghazi, A.M., 2000. Petrology, geochemistry and tectonic setting of the Khoy ophiolite, northwest Iran: implications for Tethyan tectonics. Journal of Asian Earth Sciences, 18: 109-121.
  • 24. Hassanzadeh, J., Wernicke, B.P., 2016. The Neotethyan Sanandaj-Sirjan zone of Iran as an archetype for passive margin-arc transitions Tectonics, 35: 586-621.
  • 25. Hosseini, M.R., Hassanzadeh, J., Alirezaei, S., Sun, W., Li, C.Y., 2017. Age revision of the Neotethyan arc migration into the southeast Urumieh-Dokhtar belt of Iran: geochemistry and U-Pb zircon geochronology. Lithos, 284-285: 296-309.
  • 26. Hultberg, S.U., Malmgren, B.A., 1986. Dinoflagellate and planktonic foraminiferal paleobathymetrical indices in the Boreal uppermost Cretaceous. Micropaleontology, 32: 316-323.
  • 27. Jafari Sough, R., Asiabanha, A., Nasrabadi, M., 2018. Geochemistry of Cretaceous hydromagmatic lava flows in Separdeh district, NE Qazvin, central Alborz (in Farsi). Iranian Journal of Crystallography and Mineralogy, 26: 717-732.
  • 28. Keller, G., Adatte, T., Stinnesbeck, W., Luciani, V., Karoui-Yaakoub, N., Zaghbib-Turki, D., 2002. Paleoecology of the Cretaceous-Tertiary mass extinction in planktonic foraminifera. Palaeogeography, Palaeoclimatology, Palaeoecology, 178: 257-297.
  • 29. Lam, P.J., 2002. Geology, geochronology, and thermochronology of the Alam Kuh area, central Alborz Mouniains, northern Iran. MSc. thesis, University of California, Los Angeles.
  • 30. Le Maitre, R.W., Streckeisen, A., Zanettin, B., Le Bas, M.J., Bonin, B., Bateman, P., Bellieni, G., Dudek, A., Efremova, S., Keller, J., Lameyre, J., Sabine, P.A., Schmid, R., Sørensen, H., Wooley, A.R., 2002. Igneous rocks, a classification and glossary of terms. Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks, 2nd ed. Cambridge. Cambridge University Press.
  • 31. Lofgren, G.E., 1974. An experimental study of plagioclase crystal morphology: isothermal crystallization. American Journal of Science, 274: 243-273.
  • 32. Luciani, V., 2002. High-resolution planktonic foraminifera analysis from the Cretaceous-Tertiary boundary at Ain Settara (Tunisia): evidence of an extended mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 178: 299-319.
  • 33. Mevel, C., Velde, D., 1976. Clinopyroxenes in Mesozoic pillow lavas from the French Alps: influence of cooling rate on compositional trends. Earth and Planetary Science Letters, 32: 158-164.
  • 34. Özdemir, Y., Karaođlu, Ö., Tolluođlu, A.Ü., Gülec, N., 2006. Volcanostratigraphy and petrogenesis of the Nemrut stratovolcano (East Anatolian High Plateau): the most recent post-collisional volcanism in Turkey. Chemical Geology, 226: 189-211.
  • 35. Pearce, J.A., 1982. Trace element characteristics of lavas from destructive plate boundaries. In: Andesites (ed. R.S. Thorpe): 525-548. John Wiley & Sons, New York.
  • 36. Pearce, J.A., 1983. Role of the sub-continental lithosphere in magma genesis at active continental margin. In: Continental Basalts and Mantle Xenoliths (eds. C.J. Hawkesworth and M.J. Norry): 230-249. Shiva, Nantwich, UK.
  • 37. Pearce, J.A., 1996. A user's guide to basalt discrimination diagrams. Geological Association of Canada, Short Course Notes, 12: 79-113.
  • 38. Pearce, J.A., 2008. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos, 100: 14-48.
  • 39. Saccani, E., Allahyari, Kh., Beccaluva, L., Bianchini, G., 2013. Geochemistry and petrology of the Kermanshah ophiolites (Iran): implication for the interaction between passive rifting, oceanic accretion, and OIB-type components in the Southern Neo-Tethys Ocean. Gondwana Research, 24: 392-411.
  • 40. Saccani, E., 2015. A new method of discriminating different types of post-Archean ophiolitic basalts and their tectonic significance using Th-Nb and Ce-Dy-Yb systematics. Geoscience Frontiers, 6: 481-501.
  • 41. Salavati, M., Kananian, A., Noghreyan, M., 2013. Geochemical characteristics of mafic and ultramafic plutonic rocks in southern Caspian Sea Ophiolite (Eastern Guilan). Arabian Journal of Geoscience, 6: 4851-4858.
  • 42. Sanders, I.S., 1986. Gas filter-pressing origin for segregation vesicles in dykes. Geological Magazine, 123: 67-72.
  • 43. Shahabpour, J., 2005. Tectonic evolution of the orogenic belt in the region located between Kerman and Neyriz. Journal of Asian Earth Sciences 24: 405-417.
  • 44. Shahin, A.M., 1992. Contribution to the foraminiferal biostratigraphy and paleobathymetry of the Late Cretaceous and Early Tertiary in the western Central Sinai, Egypt. Revue de Micropaleontologie, 35: 157-175.
  • 45. Smith, R.E., 1967. Segregation vesicles in basaltic lava. American Journal of Science, 265: 696-713.
  • 46. Stampfli, G.M., Borel, G.D., 2004. The TRANSMED transects in space and time: constraints on the Paleotectonic evolution of the Mediterranean Domain. In: The TRANSMED Atlas: The Medianean Region from Crust to Mantle (eds. W. Cavazza, F. Roure, W. Spakman, G.M. Stampfli and P. Ziegler): 53-80. Springer Verlag.
  • 47. Sun, S.S., McDonough, W.F., 1989. Chemical and isotopic systematic of oceanic basalts: implications for mantle composition and processes. Geological Societe Special Publications, 42: 313-345.
  • 48. Swanson, S.E., Schiffman, P., 1979. Textural evolution and metamorphism of pillow basalts from the Franciscan Complex, Western Matin County, California. Contributions to Mineralogy and Petrology, 69: 291-299.
  • 49. Taki, S., 2017. The role of fractional crystallization in the evolution of magma of the Upper Cretaceous volcanic and subvolcanic rocks from the Nageleh Sar Syncline, south Mahmood Abad, North Iran (in Farsi). Iranian Journal of Crystallography and Mineralogy, 25: 501-512.
  • 50. Verdel, C., Wernicke, B.P., Hassanzadeh, J., Guest, B., 2011. A Paleogene extensional arc flare-up in Iran. Tectonics, 30: TC3008, doi:10.1029/2010TC002809.
  • 51. Vernon, R.H., 2004. A Practical Guide to Rock Microstructure. Cambridge University Press.
  • 52. Winchester, J.A., Floyd, P.A., 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology, 20: 325-343.
  • 53. Winter, J.D., 2014. Principles of Igneous and Metamorphic Petrology (2nd ed.). Pearson New Education Limited.
  • 54. Xia, L., Xu, X., Li, X., Ma, Z., Xia, Z., 2012. Reassessment of petrogenesis of Carboniferous-Early Permian rift-related volcanic rocks in the Chinese Tianshan and its neighboring areas. Geoscience Frontiers, 3: 445-471.
  • 55. Yadollah-Pour, A., Asiabanha, A., Dehbozorgi A., 2019. Cretaceous subaqueous volcanic alternations in Chalus Formation (Meres section), northern Alborz. 26th Symposium of Crystallography and Mineralogy of Iran (SCMI), Qazvin, Iran.
  • 56. Zou, H., Fan, Q., Yao, Y., 2008. U-Th systematics of dispersed young volcanoes in NE China: Asthenosphere upwelling caused by piling up and upward thickening of stagnant Pacific slab. Chemical Geology, 255: 134-142.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e53d82dd-4100-44da-b6ee-b09ba4d6b4d4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.