PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of selected properties of asphalt concrete with synthetic wax

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article discusses the issue of viscoplastic deformation that usually occurs in road pavements, especially in the summer season in Poland. The evaluation of viscoplastic deformations was performed on the example of the asphalt concrete designated for the binding course layer (AC16W). Additionally, the bitumen used for manufacturing asphalt concrete samples was modified with two types of synthetic waxes widely applied in the warm mix asphalt technology. These waxes varied in molecular weight, which affected their softening point results. Before decomposition of the total strain into elastic and viscoplastic part, oscillatory tests in the linear viscoelastic region were required. The generalized Maxwell model was used to describe the behavior of asphalt concrete in the linear viscoelastic range. Using the elasto-viscoelastic correspondence principle, described by Schapery, the initial yield strength stress was evaluated. The pseudostrain variable turned out to be useful for estimating the onset of viscoplastic strains occurring in road pavement. Such engineering procedure approach could result in faster approximation of the yield strength level during the design of pavement structures. It will also allow for differentiation of mixtures in terms of their susceptibility to permanent deformation and of their sensitivity to traffic induced overloading.
Rocznik
Strony
217--228
Opis fizyczny
Bibliogr. 47 poz., rys., wykr., tab.
Twórcy
autor
  • Department of Transportation Engineering, Kielce University of Technology
autor
  • Department of Transportation Engineering, Kielce University of Technology
Bibliografia
  • [1] NCHRP. 2004. Contributions of Pavement Structural Layers to Rutting of Hot Mix Asphalt Pavements. Washington, D.C.: National Cooperative Highway Research Program, Transportation Research Board (TRB), National Research Council, 2002. Report 468.
  • [2] D.-T. Nguyen, B. Nedjar, and P.Tamagny, “Cyclic Elasto-viscoplastic Model for Asphalt Concrete Materials”, Road Materials and Pavement Design, Volume 8, Issue 2, 2007.
  • [3] D.W. Christensen and R. Bonaquist R, “Use of strength tests for evaluating the rut resistance of asphalt concrete”, Association of Asphalt Paving Technologists – Proceedings of the Technical Sessions, Vol. 71, 692‒711, 2002.
  • [4] J.B. Sousa and S.L. Weissman, “Modeling permanent deformation of asphalt-aggregate mixes”, Journal of The Association of Asphalt Paving Technologists, Vol. 63, 224‒257, 1994.
  • [5] A. Zbiciak, “Mathematical description of rheological properties of asphalt-aggregate mixes”, Bull. Pol. Ac.: Tech., Vol. 61, No. 1, 2013, DOI: 10.2478/bpasts-2013‒0005.
  • [6] T. Yun and Y.R. Kim. “A viscoplastic constitutive model for hot mix asphalt in compression at high confining pressure”. Construct Build Mater, 25(5), 2733–40, 2011.
  • [7] L. Czarnecki and D. van Gemert, “Civil Engineering – Ongoing Technical Research. Part I”, Bull. Pol. Ac.: Tech., Vol. 64, No. 4, 2016 DOI: 10.1515/bpasts-2016‒0075.
  • [8] A. Drescher, J.R. Kim, and D.E. Newcomb, “Permanent deformation in asphalt concrete”, J Mater Civ Eng, 5(1), 112–28,1993.
  • [9] Y. Zhang, R. Luo, and Robert L. Lytton, “Characterization of viscoplastic yielding of asphalt concrete”, Construction and Building Materials, Volume 47, Pages 671–679, 2013
  • [10] Y.R. Kim, Modeling of Asphalt Concrete, McGraw-Hill Construction, 2009.
  • [11] M. Iwański and G. Mazurek, “Optimization of the Synthetic Wax Content on Example of Bitumen 35/50” , 11th International Conference on Modern Building Materials, Structure and Techniques, MBMST, Vilnius, Lithuania, ELSEVIER, Procedia Engineering, Vol. 57, pp. 414‒423, 2013, doi. 10.1016/j.proeng.2013.04.054.
  • [12] A. Vaitkus, D. Cygas, A. Laurinavicius, and Z. Perveneckas, “Analysis and Evaluation of Possibilities for the Use of Warm Mix Asphalt in Lithuania”, The Baltic Journal of Road and Bridge Engineering, 4, pp. 80–86, 2009.
  • [13] H. Silva, J. Oliveira, J. Peralta, and S. E. Zoorob, “Optimization of warm mix asphalts using different blends of binders and synthetic paraffin wax contents”, Construction and Building Materials, 24, 1621–1631, 2010.
  • [14] WT-2/2010 – Techical requirements – Bituminous mixtures – Annex 2, order nr 102, GDDKiA 2010.
  • [15] EN 12697‒26 Bituminous mixtures – Test methods for hot mix asphalt- Part 26: Stiffness, Annex D.
  • [16] R. Bonaquist, “Refining the Simple Performance Tester for Use in Routine Practice”, Project 9‒29, NCHRP Report 614,Transportation Research Board, Washington, 2008.
  • [17] ASTM D 2166 – Standard Test Method fo Unconfined Compressive Strength of Cohesive Soil.
  • [18] P. Obara and W. Gilewski, “Dynamic stability of moderately thick beams and frames with the use of harmonic balance and perturbation methods”, Bulletin of the Polish Academy of Sciences Technical Sciences, 64(4), pp. 739‒750, 2016, doi:10.1515/bpasts-2016‒0083.
  • [19] R.A. Schapery, “Nonlinear Viscoelastic and Viscoplastic Constitutive Equations with Growing Damage”, International Journal of Fracture, Vol, 97, pp. 33‒36, 1999.
  • [20] S.W. Park and R.A. Schapery, “Methods of interconversion between linear viscoelastic material functions. Part I—A numerical method based on Prony series”, Int. J. Solids Struct. 36, 1653‒1675, 1999.
  • [21] N.I. Yusoff, “Modelling the linear viscoelastic rheological properties of bituminous binders”. PhD thesis, University of Nottingham, 2012.
  • [22] N.I. Yusoff, D. Mounierb, G. Marc-Stéphanec, M. Aireye, and H. Di Benedetto, “Modelling the rheological properties of bituminous binders using the 2S2P1D Model”, Construction and Building Materials, 38, 2013, 395–406. doi.org/10.1016/j.conbuildmat.2012.08.038.
  • [23] R.A. Shapery, “Correspondance Principles and a Generalized J-integral for Large Deformation and Fracture Analysis of Viscoelastic Media”, International Journal of Fracture, Vol. 25, pp. 195‒223, 1984.
  • [24] E.Chailleux, G. Ramond, C.Such, and C. de La Roche, “A mathematical-based master-curve construction method applied to complex modulus of bituminous materials”, Road Materials and Pavement Design, Volume 7, 2006.
  • [25] J. Judycki, P. Jaskula, M. Pszczola, J. Alenowicz, B. Dolzycki, M. Jaczewski, D. Rys, and M. Stienss, Catalogue of typical flexible and semi-rigid pavement structures. Gdansk University of Technology, Gdansk, Poland. (in Polish). GDDKiA (General Directorate for National Roads and Motorways), 2014.
  • [26] S. Mun, G.R. Chehab, and Y.R. Kim, “Determination of Time-Domain Viscoelastic Functions Using Optimized Interconversion Techniques”, Road Materials and Pavement Design, Volume X, 2005, DOI: 10.1080/14680629.2007.9690078.
  • [27] Z. Pater and G. Samołyk, Podstawy teorii i analizy obróbki plastycznej metali, Politechnika Lubelska, Lublin, 2011, ISBN: 978‒83‒62596‒55‒327.
  • [28] A.A. Gonzalez, “An Experimental Study of the Deformational and Performance Characteristics of Foamed Bitumen Stabilised Pavements”, A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree Pf Doctor of Philosophy in the University of Canterbury, 2009.
  • [29] M. Iwański and G. Mazurek, “Structuring role of F-T synthetic wax in bitumen”, Bulletin of the Polish Academy of Sciences Technical Sciences, Tom: 62, Zeszyt: 3, 525‒534, 2014.
  • [30] B. Stefańczyk and P. Mieczkowski, Mieszanki mineralno-asfaltowe. Wykonawstwo i badania, WKŁ, Warszawa, 2008.
  • [31] L.A. Al-Khateeb, A. Saoud, and M.F. Al-Msouti, “Rutting Prediction of Flexible Pavements Using Finite Element Modeling”, Jordan Journal of Civil Engineering, Vol. 5, No. 2, 173–190, 2011.
  • [32] A. Chomicz-Kowalska, W. Gardziejczyk, and M.M. Iwański, “Moisture resistance and compactibility of asphalt concrete produced in half-warm mix asphalt technology with foamed bitumen”, Construction and Building Materials, 126 (2016) 108–118, doi.org/10.1016/j.conbuildmat.2016.09.004
  • [33] G. Mazurek, „Ocena reologicznych zmian w strukturze asfaltu spowodowanych dodatkiem wosku syntetycznego F-T”, Drogownictwo, vol. 6, 200‒204, 2015.
  • [34] P. Buczyński, “The Frost Resistance of Recycled Cold Mixes with Foamed Bitumen and Different Types of Road Binders”, World Multidisciplinary Civil Engineering-Architecture-Urban Planning Symposium 2016, Procedia Engineering Volume 161, Pages 54–59, 2016, http://dx.doi.org/10.1016/j.proeng.2016.08.497
  • [35] D. Florea, Nonassociated elastic viscopastic model for bituminous concrete, Int J.Eng Sci, 32(1):87–93,1994,
  • [36] B.S, Underwood, Y.R. Kim, and M.N, Guddati, Haracterization nad Performance Prediction of ALF Mixtures Using a Viscoelastoplastic Continuum Damange Model, Journal of Association of Asphalt Paving Techologist, AAPT, Vol. 75, pp. 577‒636, 2006
  • [37] A.C. Collop, D. Cebon, and M.S. Hardy, Viscoelastic approach to rutting in flexible pavements, ASCE, Journal of Transportation Eng., Vol. 121, 1995
  • [38] J. Judycki, P. Jaskula, M. Pszczola, J. Alenowicz, B. Dolzycki, M. Jaczewski, D. Rys, and M. Stienss, GDDKiA (General Directorate for National Roads and Motorways ), Catalogue of typical flexible and semi-rigid pavement structures, Gdansk University of Technology, Gdansk, Poland, (in Polish), 2014.
  • [39] A. Drescher, J.R. Kim, and D.E. Newcomb, Permanent deformation in asphalt concrete. J Mater Civ Eng,5(1):112–28, 1993,
  • [40] J.R. Mattos, W.P. Núñez, J.A. Ceratti, A. Zíngano, and W. Fedrigo, Shear strength of hot-mix asphalt and its relation to near-surface pavement failure – A case study in Southern Brazil, E&E Congress 2016, dx.doi.org/10.14311/EE.2016.240
  • [41] P. Mackiewicz, Parametry materiałowe mieszanek mineralno-asfaltowych w badaniu statycznym i dynamicznym [Material parameters of asphalt mixtures identified in static and dynamic tests], Materiały Budowlane 1 0/2015, 5 4‒5, DOI: 10.15199/33.2015.10.16
  • [42] A. Zbiciak, Identification of viscoelastic properties of bituminous mixes using classical and fractional rheological models,Theoretical Foundations of Civil Engineering, vol. 1, Mechanics of Materials and Structures, ChapterVI, pp. 63‒72, Warsaw University of Technology Publishing House, Warsaw, 2012
  • [43] A. Zbiciak, Identyfication of viscoelastic properties of asphalt-aggregatemixes using classical and fractional rheological models, XXIRUSSIAN–SLOVAK–РОLISH SEMINAR, MOSCOW-ARKHANGELSK, ТHEORETICAL FOUNDATION OF CIVIL ENGINEERING, 2012.
  • [44] M.F. Woldekidan, Response Modelling of Bitumen, Bituminous Mastic and Mortar, PhD thesis, Faculty of Civil Engineering and Geosciences at the Delft University of Technology (TUD), 2011
  • [45] P. Hajikarimi, S. Mohammadi, and S. Aflaki, Two dimensional creep analysis of linear cracked viscoelastic medium using the extended finite element method, European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2012)
  • [46] Near-Surface Pavement Failure Under Multiaxial Stress State in Thick Asphalt Pavement, H. Wang, and I.L. Al-Qadi, In Transportation Research Record: Journal of the Transportation Research Board, Nº 2514 TRB, National Research Council, Washington, D.C., pp. 91‒99, 2010
  • [47] G. Mazurek and M. Iwański, Modelling of Asphalt Concrete Stiffness in the Linear Viscoelastic Region, Materials Science and Engineering 245 (2017) doi:10.1088/1757‒899X/245/3/032029
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e53cb9f7-7aa4-453c-8cb5-900be7beecc5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.