PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Electrical conductivity and pH in surface water as tool for identification of chemical diversity

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the present study, the creeks and lakes located at the western shore of Admiralty Bay were analysed. The impact of various sources of water supply was considered, based on the parameters of temperature, pH and specific electrolytic conductivity (SEC25). All measurements were conducted during a field campaign in January-February 2017. A multivariate dataset was also created and a biplot of SEC25 and pH of the investigated waters was performed. The average temperatures of the investigated waters were 0.10-8.10 °C. The pH values indicate that most of the water environments of the analysed area are slightly acidic to alkaline (5.26-8.50) with two exceptions: Siodlo II Creek (9.26) and Petrified Forest Creek (8.95), which are characterised by greater alkalinity. At the measurement points closest to the Baranowski Glacier and Ecology Glacier, SEC25 values were the lowest (26.8-61.1 μS·cm–1), while the remaining values ranged from 79.0 to 382 μS·cm–1 for the whole studied area. Based on the results it is concluded that the periodic intensive inflow of ablation waters, combined with morphological changes in the glacier front, causes a significant variability in the outflow network, creating the conditions for changes in basic physicochemical parameters. Moreover, it is observed that local depressions in the terrain form sedimentation traps in which, alongside fine-grained deposits, compounds can accumulate that originate from in situ sedimentation and that are also associated with surface runoff from the melting of snow cover, buried ice and permafrost.
Rocznik
Strony
95--111
Opis fizyczny
Bibliogr. 52 poz., rys., map., wykr., tab.
Twórcy
  • Department of Analytical Chemistry, Faculty of Chemistry, Gdansk University of Technology, ul. G. Narutowicza 11/12, 80-233 Gdańsk, Poland, phone +48 58 347 21 10, fax: +48 58 347 26 94
  • Institute of Geography, Kazimierz Wielki University, pl. Kościelecki 8, 85-033, Bydgoszcz, Poland, phone +48 52 349 62 72
  • Department of Water and Waste Water Technology, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, ul. G. Narutowicza 11/12, Gdańsk 80-233, Poland
  • Institute of Geography, Kazimierz Wielki University, pl. Kościelecki 8, 85-033, Bydgoszcz, Poland, phone +48 52 349 62 72
  • Department of Analytical Chemistry, Faculty of Chemistry, Gdansk University of Technology, ul. G. Narutowicza 11/12, 80-233 Gdańsk, Poland, phone +48 58 347 21 10, fax: +48 58 347 26 94
Bibliografia
  • [1] Mink S, Lopez-Martinez J, Maestro A, Garrote J, Ortega JA, Serrano E, et al. Insights into deglaciation of the largest ice-free area in the South Shetland Islands (Antarctica) from quantitative analysis of the drainage system. Geomorphology. 2014;225:4-24. DOI: 10.1016/j.geomorph.2014.03.028.
  • [2] Fountain AG, Levy JS, Gooseff MN, Van Horn D. The McMurdo Dry Valleys: A landscape on the threshold of change. Geomorphology. 2014;225:25-35. DOI: 10.1016/j.geomorph.2014.03.044.
  • [3] Oliva M, Ruiz-Fernández J. Coupling patterns between para-glacial and permafrost degradation responses in Antarctica. Earth Surf. Process. Landforms. 2015;40:1227-38. DOI: 10.1002/esp.3716.
  • [4] Oliva M, Ruiz-Fernández J. Geomorphological processes and frozen ground conditions in Elephant Point (Livingston Island, South Shetland Islands, Antarctica). Geomorphology. 2017;293:368-79. DOI: 10.1016/j.geomorph.2016.01.020.
  • [5] Vaughan DG, Marshall GJ, Connolley WM, Parkinson C, Mulvaney R, Hodgson DA, et al. Recent rapid regional climate warming on the Antarctic Peninsula. Climatic Change. 2003;60:243-74. DOI: 10.1023/A:1026021217991.
  • [6] Turner J, Colwell SR, Marshall GJ, Lachlan-Cope TA, Carleton AM, Jones PD, et al. Antarctic climate change during the last 50 years. Int J Climatol. 2005;25:279-94. DOI: 10.1002/joc.1130.
  • [7] Oliva M, Pereira P, Ruiz-Fernández J, Nieuwendam A. Recent advances in the study of active layer thermal regime and seasonal frost dynamics in cold climate environments. Catena. 2017;149:515-8. DOI: 10.1016/j.catena.2016.08.030.
  • [8] Mulvaney R, Abram NJ, Hindmarsh RCA, Arrowsmith C, Fleet L, Triest J, et al. Recent Antarctic Peninsula warming relative to holocene climate and ice-shelf history. Nature. 2012;489:141-5. DOI: 10.1038/nature11391.
  • [9] Bockheim J, Vieira G, Ramos M, López-Martínez J, Serrano E, Guglielmin M, et al. Climate warming and permafrost dynamics in the Antarctic Peninsula region. Glob Planet Change. 2013;100:215-23. DOI: 10.1016/j.gloplacha.2012.10.018.
  • [10] Kejna M, Araźny A, Sobota I. Climatic change on King George Island in the years 1948-2011. Pol Polar Res. 2013;34(2):213-35. DOI: 10.2478/popore-2013-0004.
  • [11] Birkenmajer K. Retreat of Ecology Glacier, Admiralty Bay, King George Island (South Shetland Islands, West Antarctica) 1956-2001. Bull Polish Acad Sci. 2002;50(1):15-29.
  • [12] Cook A, Fox A, Vaughan D, Ferrigno J. Retreating glacier fronts on the Antarctic Peninsula over the past half-century. Science. 2005;308(5721):541-4. DOI: 10.1126/science.1104235.
  • [13] Rückamp M, Braun M, Suckro S, Blindow N. Observed glacial changes on the King George Island ice cap, Antarctica, in the last decade. Glob Planet Change. 2011;79:99-109. DOI: 10.1016/j.gloplacha.2011.06.009.
  • [14] Pętlicki M, Sziło J, Macdonell S, Vivero S, Bialik RJ. Recent deceleration of the ice elevation change of ecology glacier (King George Island, Antarctica). Remote Sensing. 2017;9(6):520. DOI: 10.3390/rs9060520.
  • [15] Szilo J, Bialik RJ. Bedload transport in two creeks at the ice-free area of the Baranowski Glacier (King George Island, West Antarctica). Pol Polar Res. 2017;38(1):21-39. DOI: 10.1515/popore-2017-0003.
  • [16] Hawes I, Brazier P. Freshwater stream ecosystems of James Ross Island, Antarctica. Antarct Sci. 1991;3:265-71. DOI: 10.1017/S0954102091000329.
  • [17] Wojtuń B, Fabiszewski J. Chemical properties of freshwater environment at the Admiralty Bay region (West Antarctica). Polish Polar Stud. XXVI Polar Symp. Lublin. 1999;393-9. http://geografia.umcs.lublin.pl/wyprawy/publikacje/spl1999/1999%20art%2049.pdf.
  • [18] Juchnowicz-Bierbasz M. Year-round changes of nutrients in fresh water bodies near Arctowski Station (South Shetland Islands, Antarctica). Pol Polar Res. 1999;20:243-58.
  • [19] Toro M, Camacho A, Rochera C, Rico E, Baňon M, Fernandez-Valiente E, et al. Limnological characteristics of the freshwater ecosystems of Byers Peninsula, Livingston Island, in Maritime Antarctic. Polar Biol. 2007;30(5):635-49. DOI: 10.1007/s00300-006-0223-5.
  • [20] Nędzarek A, Pociecha A. Limnological characterization of freshwater systems of the Thomas Point Oasis (Admiralty Bay, King George Island, West Antarctica). Polar Sci. 2010;4(3):457-67. DOI: 10.1016/j.polar.2010.05.008.
  • [21] Nędzarek A, Tórz A, Drost A. Selected elements in surface waters of Antarctica and their relations with the natural environment. Polar Res. 2014;33:21417. DOI: 10.3402/polar.v33.21417.
  • [22] Nędzarek A, Tórz A, Podlasińska J. Ionic composition of terrestrial surface waters in Maritime Antarctic and the processes involved in formation. Antarct Sci. 2015;27(2):150-61. DOI: 10.1017/S0954102014000522.
  • [23] Zwoliński Z, Kejna M, Rachlewicz G, Sobota I, Szpikowski J. Solute and sedimentary fluxes on King George Island. In: Beylich AA, Dixon J, Zwoliński Z editors. Source-to-Sink Fluxes in Undisturbed Cold Environments. Cambridge: Cambridge University Press; 2016:213-37. DOI: 10.1017/CBO9781107705791.018.
  • [24] Szopińska M, Namieśnik J, Polkowska Ż. How important is research on pollution levels in Antarctica? Historical approach, difficulties and current trends. Rev Environ Contam Toxicol. 2016;239:79-156. DOI: 10.1007/398_2015_5008.
  • [25] Szopińska M, Szumińska D, Bialik RJ, Chmiel S, Plenzler J, Polkowska Ż. Impact of a newly-formed periglacial environment and other factors on fresh water chemistry at the western shore of Admiralty Bay in the summer of 2016 (King George Island, Maritime Antarctica). Sci Total Environ. 2018;613-614:619-34. DOI: 10.1016/j.scitotenv.2017.09.060.
  • [26] IPCC. Summary for Policymakers. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, et al., editors. Climate Change 2013, The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press; 2013:3-29. ISBN: 9781107057991. https://www.ipcc.ch/site/assets/uploads/2018/03/WG1AR5_SummaryVolume_FINAL.pdf.
  • [27] Kroto HW, Zielińska M, Rajfur M, Wacławek M. The climate change crisis? Chem Didact Ecol Metrol. 2016;21(1-2):11-27. DOI: 10.1515/cdem-2016-0001.
  • [28] Simões JC, Bremer UF, Aquino FE, Ferron FA. Morphology and variations of glacial drainage basins in the King George Island ice field, Antarctica. Ann Glaciol. 1999;29:220-4. DOI: 10.3189/172756499781821085.
  • [29] Pudełko R. Two new topographic maps for sites of scientific interest on King George Island, West Antarctica. Polish Polar Res. 2008;29(3):291-7.
  • [30] López-Martínez J, Serrano E, Schmid T, Mink S, Linés C. Periglacial processes and landforms in the South Shetland Islands (northern Antarctic Peninsula region). Geomorphology. 2012;155-156:62-79. DOI: 10.1016/j.geomorph.2011.12.018.
  • [31] Christensen JH, Hewitson B, Busuioc A, Chen A, Gao X, Held I, et al. Regional Climate Projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, et al., editors. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press; 2007:849-940. ISBN: 978 0521 88009-1. https://www.ipcc.ch/report/ar4/wg1/.
  • [32] Turner J, Barrand NE, Bracegirdle TJ, Convey P, Hodgson DA, Jarvis M, et al. Antarctic climate change and the environment - an update. Polar Record. 2014;50(3):237-59. DOI: 10.1017/S0032247413000296.
  • [33] Turner J, Lu H, White I, King JC, Phillips T, Hosking JS, et al. Absence of 21st century warming on Antarctic Peninsula consistent with natural variability. Nature. 2016;535:411-5. DOI: 10.1038/nature18645.
  • [34] Oliva M, Navarro F, Hrabáček F, Hernández A, Nývlt D, Pereira P, et al. Recent regional climate cooling on the Antarctic Peninsula and associated impacts on the cryosphere. Sci Total Environ. 2017;580:210-23. DOI: 10.1016/j.scitotenv.2016.12.030.
  • [35] Bockheim J, Vieira G, Ramos M, López-Martínez J, Serrano E, Guglielmin M, et al. Climate warming and permafrost dynamics in the Antarctic Peninsula region. Global Planetary Change. 2013;100:215-23. DOI: 10.1016/j.gloplacha.2012.10.018.
  • [36] Birkenmajer K. Admiralty Bay, King George Island (South Shetland Islands, West Antarctica): A geological monograph. Stud Geol Polon. 2003;120(14):5-73. http://www.polish.polar.pan.pl/ppr01/1980_1_029-054.pdf.
  • [37] Zwolicki A, Barcikowski M, Barcikowski A, Cymerski M, Stempniewicz L, Convey P. Seabird colony effects on soil properties and vegetation zonation patterns on King George Island, Maritime Antarctic. Polar Biol. 2015;38(10):1645-55. DOI: 10.1007/s00300-015-1730-z.
  • [38] Zwoliński Z. Mobilność materii mineralnej na obszarach paraglacjalnych, Wyspa Króla Jerzego, Antarktyka Zachodnia (The mobility of mineral matter in paraglacial areas, King George Island, Western Antarctica). Poznań: Wyd Naukowe UAM; 2007;74. ISBN: 9788323217244.
  • [39] Szymczak E. Particle Size Characteristics of Fluvial Suspended Sediment in Proglacial Streams, King George Island, South Shetland Island. IOP Conf. Ser.: Earth Environ. Sci. 2017;95:022015. DOI: 10.1088/1755-1315/95/2/022015.
  • [40] Schaefer CEGR, Santana RM, Simas FNB, Francelino MR, Filho EIF, Albuquerque MA, et al. Geoenvironments from the vicinity of Arctowski Station, Admiralty Bay, King George Island, Antarctica: vulnerability and valuation assessment, U.S. Geological Survey and The National Academies. Short Research Paper 015. 2007:1047. DOI: 10.3133/of2007-1047.srp015.
  • [41] Myrcha A, Pietr SJ, Tatur A. The role of pygoscelid penguin rookeries in nutrient cycles at Admiralty Bay, King George Island. In: Siegfried WR, Condy PR, Laws RM. editors. Antarctic Nutrient Cycles and Food Webs. Springer Science & Business Media. 2013:156-62. DOI: 10.1007/978-3-642-82275-9_2.
  • [42] Simas FNB, Schaefer CEGR, Michel RFM, Francelino MR, Bockheim JG. Soils of the South Orkney and South Shetland Islands, Antarctica. In: Bockheim JG, editor. The Soils of Antarctica. Springer Switzerland; 2015;227-73. DOI: 10.1007/978-3-319-05497-1_13.
  • [43] Nędzarek A. Sources, diversity and circulation of biogenic compounds in Admiralty Bay, King George Island, Antarctica. Antarct Sci. 2008;20(2):135-45. DOI: 10.1017/S0954102007000909.
  • [44] Zhu RB, Sun LG, Kong DM, Geng JJ, Wang N, Wang Q, et al. Matrix-bound phosphine in Antarctic biosphere. Chemosphere. 2006;64(1):1429-35. DOI: 10.1016/j.chemosphere.2005.12.031.
  • [45] Völkening J, Heumann KG. Determination of heavy metals at the pg/g level in Antarctic snow with DPASV and IDMS. Fresenius Z Anal Chem. 1988;331(2):174-81. DOI: 10.1007/BF01105162.
  • [46] Rose NL, Jones VJ, Noon PE, Hodgson DA, Flower RJ, Appleby PG. Long-range transport of pollutants to the Falkland Islands and Antarctica: Evidence from lake sediment fly ash particle records. Environ Sci Technol. 2012;46(18):9881-9. DOI: 10.1021/es3023013.
  • [47] Kosek K, Kozak K, Kozioł K, Jankowska K, Chmiel S, Polkowska Ż. The interaction between bacterial abundance and selected pollutants concentration levels in an arctic catchment (southwest Spitsbergen, Svalbard). Sci Total Environ. 2018;622-623:913-23. DOI: 10.1016/j.scitotenv.2017.11.342.
  • [48] Lehmann-Konera S, Franczak Ł, Kociuba W, Szumińska D, Chmiel S, Polkowska Ż. Comparison of hydrochemistry and organic compound transport in two non-glaciated high Arctic catchments with a permafrost regime (Bellsund Fjord, Spitsbergen). Sci Total Environ. 2018;613-614:1037-47. DOI: 10.1016/j.scitotenv.2017.09.064.
  • [49] Lehmann-Konera S, Kociuba W, Chmiel S, Franczak Ł, Polkowska Ż. Concentrations and loads of DOC, phenols and aldehydes in a proglacial arctic river in relation to hydro-meteorological conditions. A case study from the southern margin of the Bellsund Fjord - SW Spitsbergen. Catena. 2019;174:117-29. DOI: 10.1016/j.catena.2018.10.049.
  • [50] Keatley BE, Douglas MSV, Smol JP. Evaluating the influence of environmental and spatial variables on diatom spiecies distributions from Melville Island (Canadian High Arctic). Botany. 2008;86:76-90. DOI: 10.1139/B07-118.
  • [51] Westover KS, Moser KA, Porinchu DF, MacDonald GM, Wang X. Physical and chemical limnology of a 61-lake transect across mainland Nunavut and southeastern Victoria Island, Central Canadian Arctic. Fundamental and Applied Limnology Archiv für Hydrobiologie. 2009;175/2:93-112. DOI: 10.1127/1863-9135/2009/0175-0093.
  • [52] Cai Y, Guo L, Douglas TA. Temporal variations in organic carbon species and fluxes from the Chena River, Alaska. Limnol Oceanogr. 2008;53(4):1408-19. DOI: 10.2307/40058262.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e53b4c58-8e81-46ff-90ef-8f585d03bdcc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.