PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigation and elimination of surfactant-induced interferences in anodic stripping voltammetry for the determination of trace amounts of cadmium

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article aims to investigate in detail to what extent surfactants affect the determination of cadmium by anodic stripping voltammetry. In recent years, the production and use of surfactants have been steadily increasing, so that their concentration in environmental water samples is rising. At the same time, it is known that organic compounds, such as surfactants, often hinder the voltammetric determination of trace elements by stripping. Non-ionic (Triton X-100, Brij 35, Tween 20, Tween 60, Tween 80), cationic (CTAB, CTAC, DTAB, HPC) and anionic (DSS, SDS) compounds were selected to investigate the effect of surfactants on the voltammetric signal of cadmium. At the same time, the extent to which the addition of Amberlite resins to the analysed solution eliminates the interfering effect of surfactants was tested. Three types of Amberlite resins XAD-2, XAD-7 and XAD-16 were selected for the study and the ratio of resin weight to solution volume was determined. Finally, the determination of cadmium in surfactant-enriched environmental samples was carried out. The recoveries obtained between 95.5 and 107%, with RSD between 3.4 and 6.2%, confirm the validity and correctness of the proposed procedure All measurements were carried out by anodic stripping voltammetry using a CNTs/SGC electrode modified with a bismuth film as the working electrode.
Rocznik
Strony
art. no. 170717
Opis fizyczny
Bibliogr. 47 poz., tab., wykr.
Twórcy
  • Department of Analytical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, 20-031 Lublin, Poland
  • Department of Analytical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, 20-031 Lublin, Poland
  • Department of Analytical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, 20-031 Lublin, Poland
Bibliografia
  • ABDEL RAHIM, A.M., MAHMOUD, E.M.M. 2023. Recent development of eco-friendly nanocomposite carbon paste electrode for voltammetric determination of Cd(II) in real samples. Analytical Sciences 39, 179–190.
  • ADAMCZYK, M., GRABARCZYK, M., LESZKO W. 2022. A voltammetric approach to the quantification of tungsten in environmental waters using a solid bismuth microelectrode. Measurement 194, 111089.
  • AHAMMAD, A.J.S., LEE, J.J., RAHMAN, M.A. 2009. Electrochemical sensors based on carbon nanotubes. Sensors 9, 2289–2319.
  • AHMED, A.S., MOHAMED, M.B.I., BEDAIR, M.A., EL-ZOMRAWY, A.A., BAKR, M.F., 2023. A new Schiff base-fabricated pencil lead electrode for the efficient detection of copper, lead, and cadmium ions in aqueous media. RSC Advances 13, 15651-15666.
  • BATLEY, G.E., FLORENCE, T.M. 1976. The effect of dissolved organics on the stripping voltammetry of seawater. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 72, 121-126.
  • BOBROWSKI, A., KRÓLICKA, A., ZARĘBSKI J. 2010. Morphology and Electrochemical Properties of the Bismuth Film Electrode Ex Situ Electrochemically Plated from Perchloric Acid. Electroanalysis 22, 1421-1427.
  • BRITTO, P.J., SANTHANAM, K.S.V., AJAYAN, P.M. 1996. Carbon nanotube electrode for oxidation of dopamine. Bioelectrochemistry and Bioenergetics 41, 121–125.
  • BRUZZONITI, M.C., SARZANINI, C., MENTASTI, E., 2000. Preconcentration of contaminants in water analysis. J. Chromatogr. A 902, 289-309.
  • BU, L., XIE, Q., MING, H. 2020. Simultaneous sensitive analysis of Cd(II), Pb(II) and As(III) using a dual-channel anodic stripping voltammetry approach. New Journal of Chemistry 44, 5739-5745.
  • CHEN, H.J., TSENG, D.H., HUANG, S. L., 2005. Biodegradation of octylphenol polyethoxylate surfactant Triton X-100 by selected microorganisms. Bioresource Technol. 96, 1483-1491.
  • CORTES, H., HERNANDEZ-PARRA, H., BERNAL-CHAVEZ, S.A., DEL PRADO-AUDELO, M.L., CABALLERO-FLORAN, I.H., BORBOLLA-JIMENEZ, F.V., GONZALEZ-TORRES, M., MAGANA, J.J., LEYVA-GÓMEZ, G., 2021. Non-Ionic Surfactants for Stabilization of Polymeric Nanoparticles for Biomedical Uses. Materials 14, 3197.
  • COSOVIC, B., VOJVODIC, V., 1982. The application of a.c. polarography to the determination of surface-active substances in seawater. Limnology and Oceanography 27, 361-369.
  • ESTEVES, V.I., CORDEIRO, N.M.A., DA COSTA DUARTE, A., 1995. Variation on the adsorption efficiency of humic substances from estuarine waters using XAD resins. Marine Chemistry 51:61-66
  • GENCHI, G., SINICROPI, M. S., LAURIA, G., CAROCCI, A., CATALANO, A., 2020. The Effects of Cadmium Toxicity. Int. J. Environ. Res. Public Health 17, 3782 (1-24).
  • GERGELY, T., MADARASZ, A., 2006. Structure of BRIJ-35 Nonionic Surfactant in Water: A Reverse Monte Carlo Study. Langmuir 22, 590–597.
  • GRABARCZYK, M., KOPER A. 2011. How to determine uranium faster and cheaper by adsorptive stripping voltammetry in water samples containing surface active compounds. Electroanalysis 23, 1442-1446.
  • GRABARCZYK, M., WARDAK, C., PIECH, R., WAWRUCH A. 2023. An Electrochemical Sensor for the Determination of Trace Concentrations of Cadmium, Based on Spherical Glassy Carbon and Nanotubes. Materials 16, 3252.
  • HAIYAN, G., 1997. Review of the application of non-ionic surfactants. Chin. J. Prac. Tech. 1997, 24-25.
  • HASANUZZAMAN, M., NARASIMHA M., PRASAD, V., FUJITA, M. 2019. Cadmium Toxicity and Tolerance in Plants. Elsevier Inc. London, UK.
  • HOYER, B., JENSEN, N. 2003. Suppression of surfactant interferences in anodic stripping voltammetry by sodium dodecyl sulphate. Electrochemistry Communications 5, 759-764.
  • JANOS, P., 2003. Separation methods in the chemistry of humic substances. Journal of Chromatography A 983, 1-18.
  • KALIYARAJ SELVA KUMAR, A., LU, Y., COMPTON, R.G. 2022. Voltammetry of carbon nanotubes and the limitations of particle-modified electrodes: are carbon nanotubes electrocatalytic? The Journal of Physical Chemistry Letters 13, 8699–8710.
  • KARAZAN, Z.M., ROUSHANI, M. 2023. Selective determination of cadmium and lead ions in different food samples by poly (riboflavin)/carbon black-modified glassy carbon electrode. Food Chemistry 423, 136283.
  • KRÓLICKA, A., BOBROWSKI, A., ZARĘBSKI, J., TESAROWICZ, I. 2014. Bismuth Film Electrodes for Adsorptive Stripping Voltammetric Determination of Sunset Yellow FCF in Soft Drinks. Electroanalysis 26, 756-765.
  • KUBIAK, W.W., WANG, J. 1989. Anodic-stripping voltammetry of heavy metals in the presence of organic surfactants. Talanta 36, 821-824.
  • LEPANE, V. 1999. Comparison of XAD resins for the isolation of humic substances from seawater. Journal of Chromatography A 845, 329-335.
  • LI, M.H., 2007. Effects of nonionic and ionic surfactants on survival, oxidative stress, and cholinesterase activity of planarian. Chemosphere 70, 1796-1803.
  • LIU, X., LI, A., ZHOU, B., QIU, C., REN, H., 2009. Chemiluminescence determination of surfactant Triton X-100 in environmental water with luminol-hydrogen peroxide system. Chem. Cent. J. 3, 7.
  • MACKAY, R.A. 1994, Electrochemistry in association colloids. Colloids and surfaces A: physicochemical and engineering aspects. 82, 1-28.
  • MALEKI, N., SAFAVI, A., SHAHBAAZI, H.R. 2005. Minimizing the Interferences from Adsorption of Substances onto Cell Components in Stripping Voltammetry. Analytical Letters 38, 1769-1781.
  • NEMCOVA, L., BAREK, J., ZIMA, J. 2012. A voltammetric comparison of the properties of carbon paste electrodes containing glassy carbon microparticles of various sizes. Journal of Electroanalytical Chemistry 675, 18–24.
  • RAHIM, A.M.A., MAHMOUD, E.M.M. 2023. Recent development of eco-friendly nanocomposite carbon paste electrode for voltammetric determination of Cd(II) in real samples. Analytical Sciences 39, 179-190.
  • RHEIN, L. 2007. Surfactant Action on Skin and Hair: Cleansing and Skin Reactivity Mechanisms. Handbook for Cleaning/Decontamination of Surfaces 1, 305-369.
  • ROJAS-ROMO, C., ALIAGA, M.E., ARANCIBIA, V., GOMEZ, M. 2020. Determination of Pb(II) and Cd(II) via anodic stripping voltammetry using an in-situ bismuth film electrode. Increasing the sensitivity of the method by the presence of Alizarin Red S. Microchemical Journal 159, 105373.
  • SATARUG, S., BAKER, J.R., URBENJAPOL, S., HASWELL-ELKINS, M., REILLY, P.E., WILLIAMS, D.J., MOORE, M.R., 2003. A global perspective on cadmium pollution an toxicity in non-occupationally exposed population. Toxicol. Lett. 137, 65–83.
  • SCHRAMM, L.L., STASIUK, E.N., GERRARD MARANGONI, D.G. 2003. Surfactants and their applications. Annual Reports on the Progress of Chemistry, Section C 99, 3-48.
  • TAPIA, M.A., PEREZ-RAFOLS, C., OLIVEIRA, F.M., GUSMAO, R., SERRANO, N., SOFER, Z., DIAZ-CRUZ, J.M. 2023. Antimonene-Modified Screen-Printed Carbon Nanofibers Electrode for Enhanced Electroanalytical Response of Metal Ions. Chemosensors 11, 219.
  • THANH, N.M., LUYEN, N.D., THANH TAM TOAN, T., HAI PHONG, N., VAN HOP, N. 2019. Voltammetry determination of Pb(II), Cd(II), and Zn(II) at bismuth film electrode combined with 8-hydroxyquinoline as a complexing agent. Journal of Analytical Methods in Chemistry 2019, 4593135.
  • WANG, J., DEN-BAI, L. 1984. Effect of surface-active compounds on voltammetric stripping analysis at the mercury film electrode. Talanta 31, 703-707.
  • WANG, J., LU, J., HOCEVAR, S.B, FARIAS, P.A.M., OGOREVC, B. 2000. Bismuth-coated carbon electrodes for anodic stripping voltammetry. Analytical Chemistry 72, 3218-3222.
  • WANG, T., YUE, W. 2017. Carbon nanotubes heavy metal detection with stripping voltammetry: a review paper. Electroanalysis 29, 2178–2189.
  • WANG, Y., WU, X., SUN, J., WANG, C., ZHU, G., BAI, L.P., JIANG, Z.H., ZHANG, W. 2022. Stripping voltammetric determination of cadmium and lead ions based on a bismuth oxide surface-decorated nanoporous bismuth electrode. Electrochemistry Communications 136, 107233.
  • WASĄG, J., GRABARCZYK M. 2016. Adsorptive stripping voltammetry of In(III) in the presence of cupferron using an in situ plated bismuth film electrode. Analytical Methods 8, 3605-3612.
  • WĘGIEL, K., GRABARCZYK, M., KUBIAK, W.W., BAŚ, B. 2017. A reliable and sensitive voltammetric determination of Mo(VI) at the in situ renovated bismuth bulk annular band electrode. Journal of the Electrochemical Society 164, H352-H357.
  • WHO Technical Report Series 960, Evaluation of certain food additives and contaminants: seventy-third report of the Joint FAO/WHO Expert Committee on Food Additives. World Health Organization; 2011. https://apps.who.int/iris/bitstream/handle/10665/44515/WHO_TRS_960_eng.pdf?sequence=1&isAllowed=y [accessed 11 May 2023]
  • WILLIAMS, J.J. 2007. Formulation of Carpet Cleaners. Handbook for Cleaning/Decontamination of Surfaces 1, 103-123.
  • ZAREI, E., IZADYAR, A., ASGHARI, A., RAJABI, M. 2022. Development of 2-aminobenzoic Acid as a Complexing Ligand for Simultaneous Adsorptive Cathodic Stripping Voltammetric Determination of Trace Copper, Lead and Cadmium. Portugaliae Electrochimica Acta 40, 325-335.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e5361b80-4bc0-4e38-b10a-9bc68e862abe
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.