PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Thermal Decomposition of Ammonium Perchlorate Encapsulated with Copper(II)/Iron(III) Oxide Nanoparticles

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Thermal decomposition of ammonium perchlorate (AP), as a high energy oxidizer in composite solid rocket propellants (CSRP), greatly affects the burning rate of the propellant. This paper summarizes the results of a study of the synergistic catalytic activity of nano-CuO/Fe₂O₃ nanoparticles on thermal decomposition of AP. AP micro-particles are efficiently encapsulated with 1 and 5 wt.% of nano-CuO and/or nano-Fe₂O₃ nanoparticles by the fast-crash solventantisolvent technique. The efficiency of the encapsulation method was confirmed using FT-IR spectroscopy. Morphological characterization, performed using SEM-EDS microscopy, showed that encapsulation provides recrystallization and deagglomeration of AP and uniform nano-catalyst distribution. The catalytic efficiency of nano-CuO/ nano-Fe₂O₃ nanoparticles on the thermal decomposition of AP was investigated using DSC, and an increase in released heat was observed from 1453 to 1628 J/g. The catalytic activities of performed nano-catalysts were proven by decreasing the HTD and merging with the low decomposition temperature peak. The highest catalytic effect was obtained after encapsulating with 5 wt.% of nano-CuO and nano-Fe₂O₃ combined in a 50/50 mass ratio due to multiple mechanisms of catalytic activity of nano-Fe₂O₃. The effect of AP encapsulation with nano-Fe₂O₃ on the burning rate of CSRP was investigated and the obtained results showed a favorable effect on the combustion rate law.
Rocznik
Strony
114--137
Opis fizyczny
Bibliogr. 43 poz., rys., tab., wykr.
Twórcy
  • Military Technical Institute, Belgrade, Serbia
  • Military Technical Institute, Belgrade, Serbia
  • Military Technical Institute, Belgrade, Serbia
  • Military Technical Institute, Belgrade, Serbia
  • University of Belgrade, Faculty of Agriculture, Belgrade, Serbia
autor
  • Military Technical Institute, Belgrade, Serbia
  • Military Technical Institute, Belgrade, Serbia
Bibliografia
  • [1] Yadav, N.; Srivastava, P.K.; Varma, M. Recent Advances in Catalytic Combustion of AP-based Composite Solid Propellants. Def. Technol. 2021, 17(3): 1013-1031; DOI: 10.1016/j.dt.2020.06.007.
  • [2] Singh, S.; Srivastava, P.; Singh, G. Nano Oxalates of Fe, Co, Ni: Burning Rate Modifiers for Composite Solid Propellants. J. Ind. Eng. Chem. 2015, 27: 88-95; DOI: 10.1016/j.jiec.2014.11.047.
  • [3] Chalghoum, F.; Trache, D.; Benziane, M.; Benhammada, A. Effect of Microand Nano-CuO on the Thermal Decomposition Kinetics of High-performance Aluminized Composite Solid Propellants Containing Complex Metal Hydrides. FirePhysChem 2022, 2(1): 36-49; DOI: 10.1016/j.fpc.2022.03.007.
  • [4] Chen, T.; Hu, Y.-W.; Zhang, C.; Gao, Z.-J. Recent Progress on Transition Metal Oxides and Carbon-supported Transition Metal Oxides as Catalysts for Thermal Decomposition of Ammonium Perchlorate. Def. Technol. 2021, 17(4): 1471-1485; DOI: 10.1016/j.dt.2020.08.004.
  • [5] Suresh Babu, K.V.; Kanaka Raju, P.; Thomas, C.R.; Syed Hamed, A.; Ninan, K.N. Studies on Composite Solid Propellant with tri-modal Ammonium Perchlorate Containing an Ultrafine Fraction. Def. Technol. 2017, 13(4): 239-245; DOI: 10.1016/j.dt.2017.06.001.
  • [6] Zhang, D.; Li, Q.; Li, R.; Li, H.; Gao, H.; Zhao, F.; Xiao, L.; Zhang, G.; Hao, G.; Jiang, W. Significantly Enhanced Thermal Decomposition of Mechanically Activated Ammonium Perchlorate Coupling with Nano Copper Chromite. ACS Omega 2021, 6(24): 16110-16118; DOI: 10.1021/acsomega.1c02002.
  • [7] Zhen, F.; Zhou, X.-Y.; Wang, L.-Q.; Yang, R.-J.; Huang, F.-L. Study on Burning and Thermal Decomposition Properties of HTPB Propellant Containing Synthesized Micro-nano Ferric Perfluorooctanoate. Propellants Explos. Pyrotech. 2019, 44(3): 362-368; DOI: 10.1002/prep.201800309.
  • [8] Rao, D.C.K.; Yadav, N.; Joshi, P.C. Cu–Co–O Nano-catalysts as a Burn Rate Modifier for Composite Solid Propellants. Def. Technol. 2016, 12: 297-304; DOI: 10.1016/j.dt.2016.01.001.
  • [9] Jain, S.; Gupta, G.; Kshirsagar, D.R.; Khire, V.H. Burning Rate and Other Characteristics of Strontium Titanate (SrTiO₃) Supplemented AP/HTPB/Al. Composite Propellants. Def. Technol. 2019, 15: 3-8; DOI: 10.1016/j.dt.2018.10.004.
  • [10] Hu, Y.; Yang, S.; Tao, B.; Liu, X.; Lin, K.; Yang, Y.; Fan, R.; Xia, D.; Hao, D. Catalytic Decomposition of Ammonium Perchlorate on Hollow Mesoporous CuO Microspheres. Vacuum 2019, 159: 105-111; DOI: 10.1016/j.vacuum.2018.10.020.
  • [11] Yan, Q.-L.; Zhao, F.-Q.; Kuo, K.K.; Zhang, X.-H.; Zeman, S.; DeLuca, L.T. Catalytic Effects of Nano Additives on Decomposition and Combustion of RDX-, HMX-, and AP-based Energetic Compositions. Prog. Energy Combust. Sci. 2016, 57: 75-136; DOI: 10.1016/j.pecs.2016.08.002.
  • [12] Pang, W.-Q.; Fan, X.-Z.; Zhao, F.-Q.; Zhang, W.; Xu, H.-X.; Yu, H.-J.; Xie, W.-X.; Yan, N.; Liu, F.-L. Effects of Different Nano-Metric Particles on the Properties of Composite Solid Propellants. Propellants Explos. Pyrotech. 2014, 39(3): 329-336; DOI: 10.1002/prep.201300172.
  • [13] Atwood, A.I.; Boggs, T.L.; Curran, P.O.; Parr, T.P.; Hanson-Parr, D.M.; Price, C.F.; Wiknich, J. Burning Rate of Solid Propellant Ingredients. Part 1: Pressure and Initial Temperature Effects. J. Propuls. Power 1999, 15(6): 740-747; DOI: 10.2514/2.5522.
  • [14] Gupta, G.; Jawale, L.; Mehilal; Bhatacharya, B. Various Methods for the Determination of the Burning Rates of Solid Propellants ‒ An Overview. Cent. Eur. J. Energ. Mater. 2015, 12(3): 593-620.
  • [15] Chaturvedi, S.; Dave, P.N. Solid Propellants: AP/HTPB Composite Propellants. Arab. J. Chem. 2019, 12(8): 2061-2068; DOI: 10.1016/j.arabjc.2014.12.033.
  • [16] Rodić, V.; Dimić, M.; Brzić, S.; Gligorijević, N. Cast Composite Solid Propellants with Different Combustion Stabilizers. Sci. Tech. Rev. 2016, 65(2): 3-10.
  • [17] Cohen-Nir, E. Temperature Sensitivity of the Burning Rate of Composite Solid Propellants. Combust. Sci. Technol. 1974, 9(5): 183-194; DOI: 10.1080/00102207408960356.
  • [18] Vara, J.A.; Dave, P.N.; Chaturvedi, S. The Catalytic Activity of Transition Metal Oxide Nanoparticles on Thermal Decomposition of Ammonium Perchlorate. Def. Technol. 2019, 15(4): 629-635.
  • [19] Joshi, S.S.; Patil, P.R.; Krishnamurthy, V.N. Thermal Decomposition of Ammonium Perchlorate in the Presence of Nanosized Ferric Oxide. Def. Sci. J. 2008, 58(6): 721-727; DOI: 10.14429/dsj.58.1699.
  • [20] Alizadeh-Gheshlaghi, E.; Shaabani, B.; Khodayari, A.; Azizan-Kalandaragh, Y.; Rahimi, R. Investigation of the Catalytic Activity of Nano-sized CuO, Co₃O₄ and CuCo₂O₄ Powders on Thermal Decomposition of Ammonium Perchlorate. Powder Technol. 2012, 217: 330-339; DOI: 10.1016/j.powtec.2011.10.045.
  • [21] Juibari, N.M.; Tarighi, S. Metal-Organic Framework-derived Nanocomposite Metal-oxides with Enhanced Catalytic Performance in Thermal Decomposition of Ammonium Perchlorate. J. Alloys Compd. 2020, 832: paper 154837; DOI: 10.1016/j.jallcom.2020.154837.
  • [22] Elbasuney, S.; Yehia, M. Thermal Decomposition of Ammonium Perchlorate Catalyzed with CuO Nanoparticles. Def. Technol. 2019, 15(6): 868-874; DOI: 10.1016/j.dt.2019.03.004.
  • [23] Reid, D.L.; Draper, R.; Richardson, D.; Demko, A.; Allen, T.; Petersen, E.L.; Seal, S. In situ Synthesis of Polyurethane-TiO₂ Nanocomposite and Performance in Solid Propellants. J. Mater. Chem. A 2014, 2(7): 2313-2322; DOI: 10.1039/C3TA14027J.
  • [24] Chen, J.; He, S.; Liu, Y.; Qiao, Z.; Huang, B.; Li, X.; Hao, Q.; Huang, H.; Yang, G. Highly Active Catalysts Based on 3D Hierarchically Ordered Porous Carbon with Entrapped Fe₂O₃ Nanoparticles for the Thermal Decomposition of Ammonium Perchlorate. Appl. Surf. Sci. 2021, 538: paper 148148; DOI: 10.1016/j.apsusc.2020.148148.
  • [25] Simić, D.; Marjanović, M.; Vitorović-Todorović, M.; Bauk, S.; Lazić, D.; Samolov, A.; Ristović, N. Nanotechnology for Military Applications – A Survey of Recent Research in Military Technical Institute. Sci. Tech. Rev. 2018, 68(1): 59-72.
  • [26] Altmann, J. Military Nanotechnology-Potential Applications and Preventive Arms Control. Taylor & Francis Group, CRC Press, Canada, 2006; ISBN 9780415407991.
  • [27] de la Fuente, J.L.; Mosquera, G.; Paris, R. High Performance HTPB-Based Energetic Nanomaterial with CuO Nanoparticles. J. Nanosci. Nanotechnol. 2009, 9(12): 6851-6857; DOI: 10.1166/jnn.2009.1579.
  • [28] Yang, Y.; Yu, X.; Wang, J.; Wang, Y. Effect of the Dispersibility of Nano-CuO Catalyst on Heat Releasing of AP/HTPB Propellant. J. Nanomater. 2011: paper 180896; DOI: 10.1155/2011/180896
  • [29] Pang, W.; DeLuca, L.T.; Fan, X.; Maggi, F.; Xu, H.; Xie, W.; Shi, X. Effects of Different Nano-Sized Metal Oxide Catalysts on the Properties of Composite Solid Propellants. Combust Sci Technol. 2016, 188: 315-328; DOI: 10.1080/00102202.2015.1083986.
  • [30] Rodić, V.; Bajlovski, M. Influence of Trimodal Fraction Mixture of AmmoniumPerchlorate on Characteristics of Composite Rocket Propellants. Sci. Tech. Rev. 2006, 56(2): 38-44.
  • [31] Rodić, V.; Bogosavljević, M.; Milojković, A.; Mijatov, S. Preliminary Research of Composite Rocket Propellants with Hexogen and Titanium Oxide Powder. Sci. Tech. Rev. 2018, 68(2): 36-47.
  • [32] Liu, W.; Xie, Y.; Xie, Q.; Fang, K.; Zhang, X.; Chen, H. Dropwise Cooling Crystallization of Ammonium Perchlorate in Gas-Liquid Two-phase Suspension Systems. RSC Chem. CrystEngComm. 2018, 20: 6932-6939; DOI: 10.1039/C8CE01389F.
  • [33] Zhang, H.; Nie, J.; Jiao, G.; Xu, X.; Yan, S.; Guo, X.; Zhang, T. Evolution of the Micropore Structure of Ammonium Perchlorate during Low-Temperature Decomposition and its Combustion Characteristics. Appl. Sci. 2021, 11: paper 9392; DOI: 10.3390/app11209392.
  • [34] Hori, K.; Iwama, A.; Fukuda, T. FTIR Spectroscopic Study on the Interaction between Ammonium Perchlorate and Bonding Agents. Propellants Explos. Pyrotech. 1990, 15(3): 99-102; DOI: 10.1002/prep.19900150307.
  • [35] Spassov, T.; Tzvetkov, G.; Lyutov, L. Novel Spherical Simonkolleite Nanoparticles and Their Promotional Effect on the Thermal Decomposition of Ammonium Perchlorate. Vacuum2020, 175: paper 109285; DOI: 10.1016/j.vacuum.2020.109285.
  • [36] Yuan, Y.; Jiang, W.; Wang, Y.; Shen, P.; Li, F.; Li, P. Hydrothermal Preparation of Fe₂O₃/graphene Nanocomposite and Its Enhanced Catalytic Activity on the Thermal Decomposition of Ammonium Perchlorate. Appl. Surf. Sci. 2014, 303: 354-359; DOI: 10.1016/j.apsusc.2014.03.005.
  • [37] Jeremić, D.; Andjelković, L.; Milenković, M.R.; Šuljagić, M.; Šumar Ristović, M.; Ostojić, S.; Nikolić, A.S.; Vulić, P.; Brčeski, I.; Pavlović, V. One-Pot Combustion Synthesis of Nickel Oxide and Hematite: From Simple Coordination Compounds to High Purity Metal Oxide Nanoparticles. Sci. Sinter. 2020, 52(4): 481-490; DOI: 10.2298/SOS2004481J.
  • [38] Šumar Ristovic, M.; Minić, D.M.; Blagojević, V.; Andjelković, K. Kinetics of Multi-Step Processes of Thermal Degradation of Co(II) Complex with N-Benzyloxycarbonylglycinato Ligand. Deconvolution of DTG Curves. Sci. Sinter. 2014, 46(1): 37-53; DOI: 10.2298/SOS1401037S.
  • [39] Mahinroosta, M. Catalytic Effect of Commercial nano-CuO and nano-Fe₂O₃ on Thermal Decomposition of Ammonium Perchlorate. J. Nanostructure Chem. 2013, 3: paper 47; DOI: 10.1186/2193-8865-3-47.
  • [40] Cao, S.; Zhou, L.; Zhang, C.; Zhang, L.; Xiang, G.; Wang, J. Core-shell Structured AP/Fe₃O₄ Composite with Enhanced Catalytic Thermal Decomposition Property: Fabrication and Mechanism Study. Chem. Eng. Sci. 2022, 247: paper 116899; DOI: 10.1016/j.ces.2021.116899.
  • [41] Yang, F.; Pei, J.; Zhao, H. First-Principles Investigation of Graphene and Fe₂O₃ Catalytic Activity for Decomposition of Ammonium Perchlorate. Langmuir 2022, 38(12): 3844-3851; DOI: 10.1021/acs.langmuir.2c00027.
  • [42] Zhou, L.; Cao, S.; Zhang, L.; Xiang, G.; Wang, J.; Zeng, X.; Chen, J. Facet Effect of Co₃O₄ Nanocatalysts on the Catalytic Decomposition of Ammonium Perchlorate. J. Hazard. Mater. 2020, 392: paper 122358; DOI: 10.1016/j.jhazmat.2020.122358.
  • [43] Wang, J.; He, S.; Li, Z.; Jing, X.; Zhang, M.; Jiang, Z. Synthesis of Chrysalis-like CuO Nanocrystals and Their Catalytic Activity in the Thermal Decomposition of Ammonium Perchlorate. J. Chem. Sci. 2009, 121(6): 1077-1081; DOI: 10.1007/s12039-009-0122-8.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e52f7d42-5011-4f0d-8a94-73523ee8ca5a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.