PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Performance Analysis of a Thermoelectric Cooler Placed between Two Thermoelectric Generators for Different Heat Transfer Conditions

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The thermoelectric cooler (TEC) and thermoelectric generator (TEG) modules have several appealing features, including fixed parts, high reliability, low maintenance costs, and seamless connection with other heating equipment, accompaniment, can be powered by a variety of low-energy renewable energy sources such as solar water/air collectors, ground heat exchangers or heat from biomass. The thermoelectric assembly was integrated into the TEC using the TEG in this study. A prototype was developed in which recently developed thermoelectric modules were integrated into a thermoelectric cooler. For this purpose, a TEC sandwiched between two TEGs with different heat transfer conditions was established, to simulate the heat transfer and thermoelectric behavior of both the TEG and the TEC system, and evaluate the effect of the combined TEG-TEC on the performance parameters of the good system by comparing different cooling modes ranging from natural convection, forced convection, and water-cooling tests. It was shown that to the natural convection of heat transfer, as the TEC voltage increases, the hot surface temperature of the upper TEG increases, and the cold surface temperature of the lower TEG decreases, where the lowest TEC temperature reaches 1.36 A. When using forced convection (by using a fan), the temperature profile decreases over time, starting at around 70 °C for 7V, and after almost 60 minutes, the temperature drops to around 45 °C for 3V. This turned out to be a match between experiment and theory in all traces shown, with a voltage difference of 25 mV for 3V TEC and ending at 70 mV for 8V TEC.
Rocznik
Strony
27--35
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
  • Renewable Energy Technology, Applied Science Private University, P.O. Box 166, 11931, Amman, Jordan
  • Department of Mechanical Engineering, Tafila Technical University, P.O. Box 179, 66110, Tafila, Jordan
Bibliografia
  • 1. Al-Manea, A., Al-Rbaihat, R., Kadhim, H.T., Alahmer, A., Yusaf, T., Egab, K. 2022. Experimental and Numerical Study to Develop TRANSYS Model for an Active Flat Plate Solar Collector with an Internally Serpentine Tube Receiver. Int. J. Thermofluids, 100189.
  • 2. Alahmer, A., Khalid, M.B., Beithou, N., Borowski, G., Alsaqoor, S., Alhendi, H. 2022. An Experimental Investigation into Improving the Performance of Thermoelectric Generators. J. Ecol. Eng., 23.
  • 3. Alsaqoor, S., Sarayreh, H.M., Andruszkiewicz, A., Borowski, G., Alahmer, A., Abu-Zaid, M. 2022. Investigating the Potential of Steam Hydro Capacitor–Prototype. Ecol. Eng, 6, 275–282.
  • 4. Bayendang, N.P., Kahn, M.T., Balyan, V. 2022. Thermoelectric Generators (TEGs) and Thermoelectric Coolers (TECs) Modeling and Optimal Operation Points Investigation. Adv. Sci. Technol. Eng. Syst., 7, 60–78.
  • 5. Bell, L.E. 2008. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science, (80-)321, 1457–1461.
  • 6. Blatt, J. 2012. Thermoelectric power of metals. Springer Science & Business Media.
  • 7. Chen, L., Meng, F., Sun, F. 2016. Thermodynamic analyses and optimization for thermoelectric devices: The state of the arts. Sci. China Technol. Sci., 59, 442–455.
  • 8. David, B.R., Spencer, S., Miller, J., Almahmoud, S., Jouhara, H. 2021. Comparative environmental life cycle assessment of conventional energy storage system and innovative thermal energy storage system. Int. J. Thermofluids, 12, 100116.
  • 9. Goupil, C., Seifert, W., Zabrocki, K., Müller, E., Snyder, G.J. 2011. Thermodynamics of thermoelectric phenomena and applications. Entropy, 13, 1481–1517.
  • 10. Huang, B.J., Duang, C.L. 2000. System dynamic model and temperature control of a thermoelectric cooler. Int. J. Refrig., 23, 197–207.
  • 11. Jouhara, H., Żabnieńska-Góra, A., Khordehgah, N., Doraghi, Q., Ahmad, L., Norman, L., Axcell, B., Wrobel, L., Dai, S. 2021. Thermoelectric generator (TEG) technologies and applications. Int. J. Thermofluids, 9, 100063.
  • 12. Kane, A., Verma, V., Singh, B. 2017. Optimization of thermoelectric cooling technology for an active cooling of photovoltaic panel. Renew. Sustain. Energy Rev., 75, 1295–1305.
  • 13. Khaled, M.B., Qandil, A., Abdallatif, N., Beithou, N., Alsaqoor, S., Alahmer, A., Aybar, H.Ş., Andruszkiewicz, A. 2022. Heating and Cooling Device for Motorhomes and Caravans. Int. J. Thermofluids, 100193.
  • 14. Lin, L., Zhang, Y.-F., Liu, H.-B., Meng, J.-H., Chen, W.-H., Wang, X.-D. 2019. A new configuration design of thermoelectric cooler driven by thermoelectric generator. Appl. Therm. Eng., 160, 114087.
  • 15. Liu, Y., Yang, S., Guo, B., Deng, C. 2014. Numerical analysis and design of thermal management system for lithium ion battery pack using thermoelectric coolers. Adv. Mech. Eng., 6, 852712.
  • 16. Lyu, Y., Siddique, A.R.M., Gadsden, S.A., Mahmud, S. 2021. Experimental investigation of thermoelectric cooling for a new battery pack design in a copper holder. Results Eng., 10, 100214.
  • 17. Mamur, H., Ahiska, R. 2014. A review: Thermoelectric generators in renewable energy. Int. J. Renew. energy Res., 4, 128–136.
  • 18. Mamur, H., Dilmaç, Ö.F., Begum, J., Bhuiyan, M.R.A. 2021. Thermoelectric generators act as renewable energy sources. Clean. Mater., 2, 100030.
  • 19. Mansour, M.A., Beithou, N., Othman, A., Qandil, A., Khalid, M.B., Borowski, G., Alsaqoor, S., Alahmer, A., Jouhara, H., 2022. Effect of Liquid Saturated Porous Medium on Heat Transfer from Thermoelectric Generator. Int. J. Thermofluids, 100264.
  • 20. Olabi, A.G., Al-Murisi, M., Maghrabie, H.M., Yousef, B.A.A., Sayed, E.T., Alami, A.H., Abdelkareem, M.A. 2022. Potential applications of thermoelectric generators (TEGs) in various waste heat recovery systems. Int. J. Thermofluids, 16, 100249.
  • 21. Riffat, S.B., Ma, X. 2003. Thermoelectrics: a review of present and potential applications. Appl. Therm. Eng., 23, 913–935.
  • 22. Singh, R., Tundee, S., Akbarzadeh, A. 2011. Electric power generation from solar pond using combined thermosyphon and thermoelectric modules. Sol. Energy, 85, 371–378.
  • 23. Skipidarov, S., Nikitin, M. (Eds.) 2016. Thermoelectrics for Power Generation. https://doi.org/10.5772/62753
  • 24. Susanto, F., Salim, A.T.A., Romandoni, N., Wahyudi, N., Indarto, B., Junaedi, Z.M.A., Basyar, K.A., Furqan, J.A., Putra, G.A.B. 2021. Application of Thermoelectric Generator TEG Type Parallel Series Electric Circuit Produces Electricity from Heat Rocket Stove, in: Journal of Physics: Conference Series. IOP Publishing, 12036.
  • 25. Suter, C., Tomeš, P., Weidenkaff, A., Steinfeld, A. 2011. A solar cavity-receiver packed with an array of thermoelectric converter modules. Sol. energy, 85, 1511–1518.
  • 26. Teffah, K., Zhang, Y., Mou, X. 2018. Modeling and experimentation of new thermoelectric cooler–thermoelectric generator module. Energies, 11, 576.
  • 27. Zhao, D., Tan, G. 2014. A review of thermoelectric cooling: materials, modeling and applications. Appl. Therm. Eng., 66, 15–24.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e52e0169-f2fa-402f-9a7f-7a26a9e639f1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.